Installation, Operation and Maintenance Instructions
300 °C Peak Natural Convection Oven - PN Model: 200 Litres
R38 Controller
Contents

This manual is for guidance on the use of the Carbolite Gero product specified on the front cover. This manual should be read thoroughly before unpacking and using the furnace or oven. The model details and serial number are shown on the back of this manual. Use the product for the purpose for which it is intended.

1.0 Symbols and Warnings .. 4
 1.1 Switches and Lights .. 4
 1.2 General Warnings .. 4

2.0 Installation .. 6
 2.1 Unpacking and Handling ... 6
 2.2 Siting and Setting Up .. 6
 2.3 Electrical Connections .. 8

3.0 R38 Controller .. 10
 3.1 PID control .. 10
 3.2 Operating Cycle .. 10
 3.3 Controller Operation ... 10
 3.4 Calibration .. 10
 3.5 Over-Temperature Control (if fitted) ... 11
 3.6 Temperature Controller Replacement .. 11

4.0 2132 Over-Temperature Controller Description (if fitted) ... 12
 4.1 Description ... 12
 4.2 Operation ... 12
 4.2.1 Controls .. 12
 4.2.2 Operation .. 13
 4.2.3 Over-Temperature Operation .. 13
 4.2.4 Over-Temperature Alarm ... 13
 4.2.5 Resetting the Over-Temperature Alarm ... 13
 4.2.6 Sensor Break ... 13
 4.3 Audible Alarm ... 14
 4.4 Navigation Diagram .. 14

5.0 Operation ... 15
 5.1 Operating Cycle .. 15
 5.2 Over-Temperature Control (if fitted) .. 15
 5.3 Vents .. 15
 5.4 Temperature Uniformity .. 16
 5.5 Explosive Vapours ... 16
 5.6 Atmospheres ... 16
5.7 Interior Light (if fitted) ... 16
5.8 Solenoid Valve with Manual Switch (if fitted) 17
5.9 Exhaust Fan (if fitted) ... 17

6.0 Maintenance .. 18
6.1 General Maintenance .. 18
6.2 Maintenance Schedule ... 18
 6.2.1 Cleaning .. 20
6.3 Calibration ... 20
6.4 After-Sales Service ... 20
6.5 Recommended Spare Parts and Spare Parts Kit 20
6.6 Power Adjustment ... 20

7.0 Repairs and Replacements .. 22
7.1 Safety Warning - Disconnection from Power Supply 22
7.2 Safety Warning - Refractory Fibre Insulation 22
7.3 Panel Removal .. 22
7.4 Temperature Controller Replacement 23
7.5 Hydraulic Thermostat Replacement ... 23
7.6 Solid-State Relay Replacement ... 23
7.7 Thermocouple Replacement .. 23
7.8 Element Replacement .. 24
7.9 Fuse Replacement .. 24

8.0 Fault Analysis ... 25
 A. Oven Does Not Heat Up ... 25
 B. Oven Overheats ... 25

9.0 Wiring Diagrams .. 26
 9.1 WV-11-00 .. 26
 9.2 WV-11-01 .. 27
 9.3 WV-11-04 .. 28

10.0 Fuses and Power Settings ... 29
 10.1 Fuses ... 29
 10.2 Power Settings ... 29

11.0 Specifications ... 30
 11.1 Environment ... 30
1.0 Symbols and Warnings

1.1 Switches and Lights

- **Instrument switch**: when the instrument switch is operated the temperature control circuit is energised.

- **Interior light**: when the interior light switch is operated the interior light illuminates.

- **Solenoid valve (if fitted)**: see section 5.8 for full details

- **Exhaust fan (if fitted)**: see section 5.9 for full details

1.2 General Warnings

- **DANGER** – Electric shock. Read any warning printed next to this symbol.

- **WARNING**: Risk of fatal injury.

- **DANGER** – Hot surface. Read any warning printed next to this symbol.

- **WARNING**: All surfaces of a product may be hot.

- **DANGER** – Read any warning printed next to this symbol.
Caution – Double Pole/Neutral Fusing
2.0 Installation

2.1 Unpacking and Handling

Remove the shelves and runners from the packaging before attempting to move the equipment.

When unpacking and handling the product, always lift it by its base. Do not use the door or any other projecting cover or component to support the equipment when moving it. Use two or more people to carry the product where possible.

Carefully remove any packing material from inside and around the product before use. Avoid damaging the surrounding insulation when removing packing materials.

Locate the shelves and runners as required.

2.2 Siting and Setting Up

Place the product on a level surface in a well ventilated area.

Site away from other sources of heat and on a non-flammable surface that is resistant to accidental spillage or hot materials.

The surface on which the equipment is mounted should be stable and not subject to movement or vibrations.

The height of the mounting surface is important to avoid operator strain when loading and unloading samples.

Unless otherwise stated elsewhere in this manual, ensure that there is at least 150 mm of free space around the back and sides of the product. Clear space is required above the product to dissipate heat.
Ensure that the product is placed in such a way that it can be quickly switched off or disconnected from the electrical supply. Some models have protruding fan motor housings: these housings must be in an area of good ventilation.

Under no circumstances should any objects be placed on top of the product. Always ensure that any vents on the top of the product are clear of any obstruction. Always ensure all cooling vents and cooling fans (if fitted) are clear of any obstruction.

The ends of the runners should be inserted into the vertical columns of holes simultaneously at the front and the back. The bar should then be rotated through 90° in a downwards direction to secure it in place. The shelves slide onto the runners such that the spurs on the lower side of the shelf are under the bar at the back; this prevents the shelf from tilting forwards when partially withdrawn.

Do NOT use the oven floor as a shelf.

Key
- A Runner
- B Shelf
- C Spur
2.3 Electrical Connections

Connection by a qualified electrician is recommended.

All models covered by this manual may be ordered for single phase A.C. supply, which may be Live to Neutral non-reversible, Live to Neutral reversible or Live to Live.

Check the product rating label before connection. The supply voltage should agree with the voltage on the label and the supply capacity should be sufficient for the current on the label.

The supply should be fused at the next size equal to, or higher than the current on the label. A table of the most common fuse ratings is also given towards the back of this manual. When the mains cable is factory fitted, internal fuses are also fitted. It is essential that the operator ensures that the product is correctly fused.

Products with a factory fitted supply cable are designed to be wired directly to an isolator or fitted with a line plug.

Products without a factory fitted supply cable require a permanent connection to a fused and isolated supply. The product's electrical access panel should be temporarily removed, and connections made to the internal terminals.

If the product is to be connected by line plug. The plug should be within reach of the operator and should be easy to remove.

When connecting the product to an isolating switch ensure that both conductors (single phase) or on all live conductors (three phase), and should be within reach of the operator.

The supply MUST incorporate an earth (ground).

Electrical Connection Details:

<table>
<thead>
<tr>
<th>Supply</th>
<th>Terminal Label</th>
<th>Cable Colour</th>
<th>Supply Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Live - Neutral</td>
</tr>
<tr>
<td>1-phase</td>
<td>L</td>
<td>Brown</td>
<td>to live</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Blue</td>
<td>to neutral</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>Green/ Yellow</td>
<td>to earth (ground)</td>
</tr>
</tbody>
</table>
2.0 Installation

<table>
<thead>
<tr>
<th>2- or 3-phase</th>
<th>L1</th>
<th>Black</th>
<th>to phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>Black</td>
<td></td>
<td>to phase 2</td>
</tr>
<tr>
<td>L3</td>
<td>Black</td>
<td></td>
<td>to phase 3 (except 2-phase)</td>
</tr>
<tr>
<td>N</td>
<td>Light Blue</td>
<td></td>
<td>to neutral (except delta)</td>
</tr>
<tr>
<td>PE</td>
<td>Green/ Yellow</td>
<td></td>
<td>to earth (ground)</td>
</tr>
</tbody>
</table>
3.0 R38 Controller

3.1 PID control
This controller uses PID (Proportional Integral Derivative) temperature control. This type of control uses a complex mathematical control system to adjust the heating power and achieve the desired temperature.

3.2 Operating Cycle
This product is fitted with an instrument switch which cuts off power to the control circuit.
Connect the product to the electrical supply.
The product has fan-assisted circulation which operates when the instrument switch is switched on.
Operate the instrument switch to activate the temperature controller.
Adjust the temperature controller - see below.
To turn the product off, set the instrument switch to its off position. The controller display will go blank. If the product is to be left unattended, isolate it from the electrical supply.

3.3 Controller Operation
When switched on, the controller lights up, goes through a short test routine and then displays the measured temperature and starts to control. The output light OUT1 indicates when heating is occurring.
To alter the setpoint, press the down arrow key once, “SPI” flashes. Then use the up and down arrow keys to adjust the setpoint. Press the P key to accept.

3.4 Calibration
If the process requires an accurate temperature display it is possible to calibrate the controller by entering a single temperature offset value as follows:
Please contact Carbolite Gero Service for detailed instructions on entering an offset in the R38 Controller.
3.5 Over-Temperature Control (if fitted)

The over-temperature controller should typically be set at 15 °C above the main controller. If an over-temperature condition occurs, check the main controller is functioning correctly.

An over-temperature condition cuts off power to the heating elements. A light in the over-temperature controller flashes. To reset this, refer to the over-temperature control section of this manual.

3.6 Temperature Controller Replacement

Before handling the controller: wear an anti-static wrist strap or otherwise avoid any possibility of damage to the unit by static electricity. Refer to the detailed instructions supplied with the replacement controller.

Disconnect the product from the electrical supply and remove the cover (see section 7.0).

Make a note of all the wiring connections before disconnecting the wires. Loosen the screw that holds the controller body clamp in place. Use a flat screwdriver or similar object to ease apart the two plastic lugs on the side of the clamp and pull the instrument forward out of the front control panel.

Reconnect the wires according to the notes made – or see section 9.0 for wiring details.

Note: If the product features an R38 over-temperature controller, then this should be replaced using the same method described.
4.0 2132 Over-Temperature Controller Description (if fitted)

4.1 Description

This over-temperature controller is fitted and supplied ready to use by Carbolite Gero. It is a digital instrument with a latching alarm, requiring no additional panel controls. The controller features easy setting of over-temperature setpoint and reading of current temperature by the over-temperature sensor.

4.2 Operation

4.2.1 Controls

Most Carbolite Gero products are fitted with an instrument switch which cuts off power to the controller and other parts of the control circuit.

To operate the controller, power must be supplied to the product and the instrument switch must be on. If a time switch is included in the product circuit, this must be in the 'ON' position.

When an over-temperature condition occurs, the controller cuts the power to a contactor, which in turn cuts power to the heating elements. Power is not restored until the controller is 'reset'.

Some components will operate after the over-temperature feature isolates the power supply e.g. cooling fans will continue to operate, provided that there is a power supply to the product. In some cases the product may not do so, if other options (such as a door switch) are fitted.
4.2.2 Operation

When switched on, the controller lights up, goes through a short test routine and then displays the measured temperature or the over-temperature setpoint.

The page key allows access to parameter lists within the controller.

A single press of the page key displays the temperature units, normally set to °C; further presses reveal the lists indicated in the navigation diagram. See section 4.4.

The scroll key allows access to the parameters within a list. Some parameters are display-only; others may be altered by the operator.

A single press of the scroll key in the 'Home' list displays the temperature units; further presses reveal the parameters in the current list indicated in the navigation diagram.

To return to the 'Home' list at any time, press page and scroll together, or wait for 45 seconds.

The down and up keys are used to alter the setpoint or other parameter values.

4.2.3 Over-Temperature Operation

Use down and up to alter the over-temperature setpoint. This should normally be set a little above the working temperature (for example 15 °C above). The product is supplied with the over-temperature set at 15 °C above the furnace or oven maximum working temperature.

Press scroll twice view the present temperature as measured by the over-temperature controller. Press it twice, the first press shows the temperature units (°C).

4.2.4 Over-Temperature Alarm

If an over-temperature condition occurs, the OP2 indicator flashes and an alarm message 2FSH also flashes, alternating with the setpoint. Power to the heating elements is disconnected.

4.2.5 Resetting the Over-Temperature Alarm

To acknowledge the alarm press scroll and page together.

If the alarm is acknowledged while there is still an over-temperature condition, the OP2 indicator stops flashing but continues to glow. The 2FSH alarm continues to flash until the over-temperature condition is cleared (by the temperature falling), when normal operation resumes.

If the alarm is acknowledged when the temperature has dropped (or after the over-temperature setpoint has been raised) so that the over-temperature condition no longer exists, then the furnace or oven immediately resumes normal operation.

4.2.6 Sensor Break

The over-temperature cut-out system also operates if the over-temperature control thermocouple breaks or becomes disconnected. The message S.br flashes where the measured temperature is normally displayed.
4.3 Audible Alarm

If an audible alarm is supplied for use with the over-temperature controller, it is normally configured to sound on over-temperature condition and to stop sounding when the alarm is acknowledged as given in section 4.2.

Note: the alarm may sound during controller start-up.

4.4 Navigation Diagram

<table>
<thead>
<tr>
<th>HL</th>
<th>Home List</th>
<th>Page Key</th>
<th>Black = Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTSP</td>
<td>Over-Temperature Setpoint</td>
<td>Scroll Key</td>
<td>Dashed = Through to other options</td>
</tr>
<tr>
<td>AL</td>
<td>Access List</td>
<td>!</td>
<td>For factory access to list and parameters not available to the operator.</td>
</tr>
</tbody>
</table>
5.0 Operation

5.1 Operating Cycle

This product is fitted with an instrument switch which cuts off power to the control circuit.

Connect the product to the electrical supply.

Turn on the instrument switch to activate the temperature controllers. The controllers illuminate and go through a short test cycle.

Over-Temperature option only. If the hydraulic thermostat over-temperature option is fitted, set the rotary dial to the desired protection temperature.

Over-Temperature option only. If the digital over-temperature option has not yet been set as required, set and activate it according to the over-temperature controller instructions.

The product will heat up according to the controller setpoint or program, unless a time switch is fitted and switched off.

Over-Temperature option only. If the over-temperature circuit has tripped, an indicator on the over-temperature controller flashes and the heating elements are isolated. Find and correct the cause before resetting the over-temperature controller according to the instructions supplied.

DO NOT switch off if the temperature is above 100 °C - damage could be caused to the fan and motor. Adjust the controller to allow the temperature to fall.

5.2 Over-Temperature Control (if fitted)

The over-temperature controller should typically be set at 15 °C above the main controller. If an over-temperature condition occurs, check the main controller is functioning correctly.

An over-temperature condition cuts off power to the heating elements. A light in the over-temperature controller flashes. To reset this, refer to the over-temperature control section of this manual.

For hydraulic thermostat, the over-temperature trip operates then a click occurs and a warning light near the thermostat lights up; the reset button on the thermostat pops out. Reset by pressing the button. In some models the reset button is directly accessible. In others it is necessary to turn the thermostat dial till the hole lines up with the reset button and press it using a small diameter rod.

For digital, a light in the over-temperature controller flashes. Reset the over-temperature controller according to the over-temperature controller instructions.

5.3 Vents

On the back of this product are two vents: inlet and exhaust. The inlet vent is covered by a baffle that should be left in place.
The exhaust vent is closed by a butterfly valve that can be controlled from the front panel. Rotate the knob clockwise to open the vent, anticlockwise to close.

In non-fan models there is only a small flow of air through the chamber. With fan versions, fumes are pushed out through the exhaust vent by fan action and fresh air is drawn in through the inlet vent.

5.4 Temperature Uniformity

Where accurate temperature control of the load is important, use the central part of the chamber and place or distribute the load to allow free air circulation. Do not place loads on the chamber floor: use the bottom shelf.

5.5 Explosive Vapours

Unless your product includes the stoving and curing option, this model is not suitable for drying or heat treatment applications where vapours are released that are combustible or which can form explosive mixtures with air. Carbolite Gero manufactures other products suitable for these applications.

5.6 Atmospheres

When an optional gas inlet is fitted, there is a label near the inlet saying "INERT GAS ONLY". In practice, inert or oxidising gases may be used, but not combustible or toxic gases.

The chamber is not gas tight, the gas usage may be high and the chamber is always likely to contain some air. Residual oxygen of approximately 1% to 2% is to be expected.

5.7 Interior Light (if fitted)

If fitted, the interior light is operated using the panel mounted switch. It will only operate when the instrument switch is on.
5.8 Solenoid Valve with Manual Switch (if fitted)

If ordered the solenoid valve is operated using the panel mounted switch. When the switch is in the 'ON' position the solenoid valve will allow gas to flow. Ensure the installation and use of the product does not create a hazardous atmosphere. The workspace must have sufficient ventilation.

5.9 Exhaust Fan (if fitted)

To operate the exhaust fan use the fan switch on the control panel; this is only functional when the instrument switch is on.

The level of air exhaust can be controlled by adjusting the slider under the exhaust box.

When the exhaust fan is turned on, there may be a drop in internal temperature before the product recovers to the setpoint value.

The airflow should be adjusted to the minimum required by the process to reduce the amount of energy wasted in heating air.
6.0 Maintenance

6.1 General Maintenance
Preventive rather than reactive maintenance is recommended. The type and frequency depends on the product use; the following are recommended.

6.2 Maintenance Schedule

CUSTOMER QUALIFIED PERSONNEL

<table>
<thead>
<tr>
<th>Maintenance Procedure</th>
<th>Method</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-Temperature Safety Circuit (if fitted)</td>
<td>Set an over-temperature setpoint lower than the displayed temperature and check for an over-temperature alarm as detailed in this manual</td>
<td>Daily</td>
</tr>
<tr>
<td>Over-Temperature Safety Circuit (if fitted)</td>
<td>Electrical measurement [!]</td>
<td>Weekly</td>
</tr>
<tr>
<td>Door Seal</td>
<td>Visual inspection - check for splits or fraying</td>
<td>Monthly</td>
</tr>
<tr>
<td>Door Seal</td>
<td>Replacement</td>
<td>Bi-Annually</td>
</tr>
<tr>
<td>Air Vent</td>
<td>Check and clean if necessary</td>
<td>Annually</td>
</tr>
<tr>
<td>Electrical Safety (external)</td>
<td>Visual check of external cables and plugs</td>
<td></td>
</tr>
<tr>
<td>Electrical Safety (internal)</td>
<td>Physically check all connections and cleaning of the power plate area</td>
<td></td>
</tr>
</tbody>
</table>

Function

<table>
<thead>
<tr>
<th>Temperature Calibration</th>
<th>Tested using certified equipment, frequency dependent on the standard required</th>
<th>Daily</th>
<th>Weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Check</td>
<td>Check that all functions are working normally</td>
<td></td>
<td>Bi-Annually</td>
</tr>
<tr>
<td>Operational Check</td>
<td>Thorough inspection and report incorporating a test of all functions</td>
<td></td>
<td>Annually</td>
</tr>
</tbody>
</table>

Performance
6.0 Maintenance

<table>
<thead>
<tr>
<th>Component</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Fans (if fitted)</td>
<td>Check whether the cooling fans are working</td>
</tr>
<tr>
<td>Circulating Fan (if fitted)</td>
<td>Visual check to see if it is running</td>
</tr>
<tr>
<td>Circulating Fan (if fitted)</td>
<td>Check bearings and replace if necessary</td>
</tr>
<tr>
<td>Element Circuit</td>
<td>Electrical measurement</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Measure the current drawn on each phase / circuit</td>
</tr>
<tr>
<td>Shelves</td>
<td>Visual check for fit and damage</td>
</tr>
</tbody>
</table>
6.0 Maintenance

6.2.1 Cleaning

The product’s outer surface may be cleaned with a damp cloth. Do not allow water to enter the interior of the case or chamber. Do not clean with organic solvents.

Under no circumstances should any objects be placed on top of the product. Always ensure that any vents on the top of the product are clear of any obstruction. Always ensure all cooling vents and cooling fans (if fitted) are clear of any obstruction.

6.3 Calibration

After prolonged use, the controller and/or thermocouple may require recalibration. This is important for processes that require accurate temperature readings or for those that use the product close to its maximum temperature. A quick check using an independent thermocouple and temperature indicator should be made from time to time to determine whether full calibration is required. Carbolite Gero can supply these items. Depending on the controller fitted, the controller instructions may contain calibration instructions.

6.4 After-Sales Service

Carbolite Gero Service has a team of Service Engineers who can offer repair, calibration and preventive maintenance of furnace and oven products both at the Carbolite Gero factory and at customers’ premises throughout the world. A telephone call or email often enables a fault to be diagnosed and the necessary parts to be despatched.

In all correspondence please quote the serial number and model type given on the rating label of the product. The serial number and model type are also given on the back of this manual when supplied with the product.

Carbolite Gero Service and Carbolite Gero contact information can be found on the back page of this manual.

6.5 Recommended Spare Parts and Spare Parts Kit

Carbolite Gero can supply individual spare parts or a kit of the items most likely to be required. Ordering a kit in advance can save time in the event of a breakdown.

Each kit consists of a thermocouple, a solid state relay, an instrument switch, an element or set of elements and a door seal; for fan models the kit includes a fan and motor assembly. Individual spare parts are also available.

When ordering spare parts please quote the model details as requested above.

6.6 Power Adjustment

The control system incorporates electronic power limiting, but for the model listed in this manual the power limit is set to 100%. The power limit parameter OP.Hi may be accessible to the operator, but should not generally be altered.
In some cases the supply voltage may be outside the range 220-240 V or the 3-phase equivalent, the power limit parameter may be set to a value other than 100%. Do not increase the value to 100%, see section 10.0 for details of power limit settings.
7.0 Repairs and Replacements

7.1 Safety Warning - Disconnection from Power Supply

Immediately switch the product off in the event of unforeseen circumstances (e.g. large amount of smoke). Allow the product to return to room temperature before inspection.

Always ensure that the product is disconnected from the electrical supply before repair work is carried out.

Caution: Double pole/neutral fusing may be used in this product.

7.2 Safety Warning - Refractory Fibre Insulation

Insulation made from High Temperature Insulation Wool
Refractory Ceramic Fibre, better known as (Alumina silicate wool - ASW).

This product contains alumino silicate wool products in its thermal insulation. These materials may be in the form of blanket or felt, formed board or shapes, slab or loose fill wool.

Typical use does not result in any significant level of airborne dust from these materials, but much higher levels may be encountered during maintenance or repair.

Whilst there is no evidence of any long term health hazards, it is strongly recommended that safety precautions are taken whenever the materials are handled.

Exposure to fibre dust may cause respiratory disease.

When handling the material, always use approved respiratory protection equipment (RPE-eg. FFP3), eye protection, gloves and long sleeved clothing.

Avoid breaking up waste material. Dispose of waste in sealed containers.

After handling, rinse exposed skin with water before washing gently with soap (not detergent). Wash work clothing separately.

Before commencing any major repairs it is recommended to make reference to the European Association representing the High Temperature Insulation Wool industry (www.ecfia.eu).

Further information can be provided on request. Alternatively, Carbolite Gero Service can quote for any repairs to be carried out either on site or at the Carbolite Gero factory.

7.3 Panel Removal

 Disconnect the product from the electrical supply.
Control panel. Open the door and remove two screws located in recesses on the left side of the control panel (these screws are covered with plastic caps). Lift the panel, pull forward the bottom of the panel and lower the panel to disengage it from the top of the body. Note that the panel remains connected by wiring. Do not disconnect any wiring without first making a careful note of all the connections.

Internal element cover. Open the door. Side cover (fan models): remove any screws holding the panel. Bottom cover (non-fan): no screws; the panel clips into place. Remove the cover.

7.4 Temperature Controller Replacement

Refer to the controller instructions for more information on how to replace the temperature controller.

7.5 Hydraulic Thermostat Replacement

Disconnect the product from the electrical supply and remove the side cover and internal element cover. See section 7.3.

Pull off the knob from the thermostat. Remove the fixing screws. Disconnect any fixing clips or screws inside the products chamber and ease out the capillary tube. Remove the thermostat.

Replace by reversal of the procedure.

7.6 Solid-State Relay Replacement

Disconnect the product from the power supply and remove the appropriate cover as given above.

Make a note of the wire connections to the solid state relay and disconnect them.

Remove the solid state relay from the base panel or aluminium plate.

Replace and reconnect the solid state relay ensuring that the bottom of it has good thermal contact with the base panel or aluminium plate.

Replace the access panel.

7.7 Thermocouple Replacement

Disconnect the product from the power supply. Remove terminal cover to gain access to the thermocouple connections. Make a note of the thermocouple connections.

Thermocouple cable colour codings are:

<table>
<thead>
<tr>
<th>Thermocouple Leg</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive (type K)</td>
<td>green</td>
</tr>
<tr>
<td>negative</td>
<td>white</td>
</tr>
</tbody>
</table>
7.0 Repairs and Replacements

Disconnect the thermocouple to be replaced from its terminal block and withdraw it. Re-assemble the new thermocouple, observing the colour coding. Refit the element access panel.

7.8 Element Replacement

Remove the control panel and the internal cover see section 7.3. The element terminals are low down in the side compartment. Disconnect the wires from the element terminals. Remove any starlock washers - these may need to be cut with wire cutters. Remove any clips holding the element inside the chamber and withdraw the element. Reverse the procedure with the new element.

To find out whether the element failure was caused by a fault in the control circuit, operate the product at a low temperature and check that it is functioning correctly.

7.9 Fuse Replacement

Fuses are accessed by removal of the panel as explained in 'Panel Removal' section. Depending on the model, supply fuses and control circuit fuses may be mounted in their own holders, or may be on a circuit board that contains an EMC filter. The fuses are marked with their ratings. Take care not to disconnect the wires leading from the EMC filter without first recording their positions: they must be reconnected to the correct terminals.
8.0 Fault Analysis

A. Oven Does Not Heat Up

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The temperature controller is OFF</td>
<td>No power from supply</td>
<td>Check the fuses in the supply line</td>
</tr>
<tr>
<td>2. The temperature controller is ON</td>
<td>The controller shows a very high temperature or a code such as EEE or --- or S.br</td>
<td>The temperature sensor has broken or has a wiring fault</td>
</tr>
<tr>
<td></td>
<td>The controller shows a low temperature</td>
<td>The SSR could be failing to switch on due to internal failure, faulty logic wiring from the controller, or faulty controller</td>
</tr>
<tr>
<td></td>
<td>There are no lights glowing on the controller</td>
<td>The controller may be faulty or not receiving a supply due to a faulty switch or a wiring fault</td>
</tr>
</tbody>
</table>

B. Oven Overheats

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oven only heats up when the instrument switch is ON</td>
<td>The controller shows a very high temperature</td>
<td>The controller is faulty</td>
</tr>
<tr>
<td></td>
<td>The controller shows a low temperature</td>
<td>The thermocouple may have been shorted out or may have been moved out of the oven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The thermocouple may be connected the wrong way round</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The controller may be faulty</td>
</tr>
<tr>
<td>2. Oven heats up when the instrument switch is OFF</td>
<td>The SSR has failed "ON"</td>
<td>Replace the SSR. Check for an accidental wiring fault which could have overloaded the SSR</td>
</tr>
</tbody>
</table>
9.0 Wiring Diagrams

9.1 WV-11-00
Connections below show single phase with instrument switch(es).

![Diagram with labels]

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1, F2</td>
<td>Fuses</td>
</tr>
<tr>
<td>FIL</td>
<td>Filter</td>
</tr>
<tr>
<td>SW</td>
<td>Instrument Switch</td>
</tr>
<tr>
<td>C</td>
<td>Temperature Controller</td>
</tr>
<tr>
<td>TC</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>SSR</td>
<td>Solid State Relay</td>
</tr>
<tr>
<td>EL</td>
<td>Element(s)</td>
</tr>
<tr>
<td>*</td>
<td>If Fitted</td>
</tr>
<tr>
<td>L</td>
<td>Live</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
</tr>
<tr>
<td>PE (GR/Y)</td>
<td>Earth (Green+Yellow)</td>
</tr>
</tbody>
</table>
9.2 WV-11-01

Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1, F2</td>
<td>Fuses</td>
</tr>
<tr>
<td>FIL</td>
<td>Filter</td>
</tr>
<tr>
<td>SW</td>
<td>Instrument Switch</td>
</tr>
<tr>
<td>R1</td>
<td>Relay (Coil)</td>
</tr>
<tr>
<td>R1/1, R1/2</td>
<td>Relay Contactor</td>
</tr>
<tr>
<td>C</td>
<td>Temperature Controller</td>
</tr>
<tr>
<td>OT</td>
<td>Over-Temperature Controller</td>
</tr>
<tr>
<td>TC</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>SSR</td>
<td>Solid State Relay</td>
</tr>
<tr>
<td>EL</td>
<td>Element(s)</td>
</tr>
<tr>
<td>*</td>
<td>If Fitted</td>
</tr>
<tr>
<td>L</td>
<td>Live</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
</tr>
<tr>
<td>PE (GR/Y)</td>
<td>Earth (Green+Yellow)</td>
</tr>
</tbody>
</table>
9.3 WV-11-04
Connections below show single phase with hydraulic thermostat.

Key
- F1, F2: Fuses
- FIL: Filter
- SW: Instrument Switch
- C: Temperature Controller
- TC: Thermocouple
- HT: Hydraulic Thermostat
- FA: Fault Light
- SSR: Solid State Relay
- EL: Element(s)
- *: If Fitted
- L: Live
- N: Neutral
- PE (GR/Y): Earth (Green+Yellow)

Note on Hydraulic Thermostat: When used over 16 Amps or in a 2- or 3-phase model, the product is fitted with a contactor; with the hydraulic thermostat in the coil circuit - similar to "WV-11-01".
10.0 Fuses and Power Settings

10.1 Fuses

F1-F2: Refer to the circuit diagrams.

F1	Internal Supply Fuses	Fitted if supply cable fitted. Fitted on board to some types of EMC filter.	GEC Safeclip of the type shown (glass type F up to 16 A) 38 mm x 10 mm type F fitted on EMC filter circuit board(s)
F2	Auxiliary Circuit Fuses	Fitted on board to some types of EMC filter. May be omitted up to 25 Amp/phase supply rating.	2 Amps glass type F On board: 20 mm x 5 mm Other: 32 mm x 6 mm
Customer Fuses	Required if no supply cable fitted. Recommended if cable fitted.	See rating label for current; See table below for fuse rating.	

<table>
<thead>
<tr>
<th>Model</th>
<th>Phases</th>
<th>Volts</th>
<th>Supply Fuse</th>
<th>Control Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN 200</td>
<td>1-phase</td>
<td>110-120 V</td>
<td>25 A</td>
<td>2 A</td>
</tr>
<tr>
<td>PN 200</td>
<td>1-phase</td>
<td>220-240 V</td>
<td>10 A</td>
<td>2 A</td>
</tr>
<tr>
<td>PN 200</td>
<td>1-phase + N</td>
<td>200-208 V</td>
<td>12 A</td>
<td>2 A</td>
</tr>
</tbody>
</table>

208 V models may have a higher fuse rating: check the rating label. Stoving and Curing (and possibly moisture extraction option) models may have a higher fuse rating: check the rating label.

10.2 Power Settings

The power limit settings (parameter OP.Hi) for this model are voltage dependant. The figures represent the maximum percentage of time that controlled power is supplied to the elements. Do not attempt to "improve performance" by setting a value higher than the recommended values. To adjust the parameter refer to the "Changing the Maximum Output Power" of the control section of the manual.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>110 V</th>
<th>120 V</th>
<th>220 V</th>
<th>230 V</th>
<th>240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (%)</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Please refer to the rating label for product specific information.
11.0 Specifications

Carbolite Gero reserves the right to change the specification without notice.

<table>
<thead>
<tr>
<th>Model</th>
<th>Max Temp (°C)</th>
<th>Max Power (kW)</th>
<th>Chamber Size (mm)</th>
<th>Approx Capacity (l)</th>
<th>Net Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>W</td>
<td>D</td>
</tr>
<tr>
<td>Peak Range Ovens - no fans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN 200</td>
<td>300</td>
<td>2.25</td>
<td>700</td>
<td>590</td>
<td>520</td>
</tr>
</tbody>
</table>

11.1 Environment

The models listed in this manual contains electrical parts and should be stored and used in indoor conditions as follows:

Temperature: 5 °C - 40 °C

Relative humidity: Maximum 80 % up to 31 °C decreasing linearly to 50 % at 40 °C
Service Record

<table>
<thead>
<tr>
<th>Engineer Name</th>
<th>Date</th>
<th>Record of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The products covered in this manual are only a small part of the wide range of ovens, chamber furnaces and tube furnaces manufactured by Carbolite Gero for laboratory and industrial use. For further details of our standard or custom built products please contact us at the address below, or ask your nearest stockist.

For preventive maintenance, repair and calibration of all furnace and oven products, please contact:

Carbolite Gero Service
Telephone: + 44 (0) 1433 624242
Fax: +44 (0) 1433 624243
Email: ServiceUK@carbolite-gero.com