Installation, Operation and Maintenance Instructions
400°C Modified Atmosphere Oven - HTMA Model: 220 Litres
2416 Controller

HTMA 4/220 + 2416 Controller
Contents
This manual is for guidance on the use of the Carbolite Gero product specified on the front cover. This manual should be read thoroughly before unpacking and using the furnace or oven. The model details and serial number are shown on the back of this manual. Use the product for the purpose for which it is intended.

1.0 Symbols and Warnings ... 5
 1.1 Switches and Lights ... 5
 1.2 General Warnings ... 5

2.0 Installation .. 6
 2.1 Unpacking and Handling ... 6
 2.2 Siting and Setting Up ... 6
 2.3 Electrical Connections ... 7

3.0 2416 Controller ... 9
 3.1 Description ... 9
 3.2 Operation ... 11
 3.3 Programming ... 13
 3.3.1 Programming Tips ... 13
 3.3.2 Multi-program model (2416P8) .. 14
 3.3.3 Holdback .. 14
 3.3.4 Program Cycling ... 14
 3.3.5 Running a Program ... 14
 3.3.6 Program example ... 15
 3.4 Controller Options .. 16
 3.4.1 Digital Communications - RS232 .. 16
 3.4.2 Digital Communications - RS485 .. 16
 3.4.3 Comms Address ... 16
 3.4.4 Alarm Option ... 17
 3.5 Temperature Controller Replacement ... 17
 3.6 Navigation Diagram ... 18

4.0 2132 Over-Temperature Controller Description (if fitted) ... 19
 4.1 Description ... 19
 4.2 Operation ... 19
 4.2.1 Controls ... 19
 4.2.2 Operation .. 20
 4.2.3 Over-Temperature Operation .. 20
 4.2.4 Over-Temperature Alarm ... 20
 4.2.5 Resetting the Over-Temperature Alarm ... 20
 4.2.6 Sensor Break .. 20
4.3 Audible Alarm ... 21
4.4 Navigation Diagram .. 21

5.0 Operation .. 22
 5.1 Operating Cycle ... 22
 5.2 Over-Temperature Control (if fitted) 22
 5.3 Explosive Vapours .. 22
 5.4 Variable Speed Fan (if fitted) .. 23
 5.5 Exhaust Fan (if fitted) ... 23
 5.6 Stoving and Curing (if fitted) ... 23
 5.6.1 Pre-heater (if fitted) ... 23
 5.7 HTMA - Manual Gas Control (if fitted) 24
 5.8 HTMA - Automatic Gas Control (if fitted) 24
 5.9 Oxygen Sensor (if fitted) .. 24
 5.9.1 Recommended Gas Flow Rates 24
 5.10 Door Switch (if fitted) .. 24

6.0 Maintenance .. 25
 6.1 General Maintenance .. 25
 6.2 Maintenance Schedule .. 25
 6.2.1 Cleaning ... 27
 6.3 Calibration ... 27
 6.4 After-Sales Service ... 27
 6.5 Recommended Spare Parts and Spare Parts Kit 27
 6.6 Power Adjustment .. 27

7.0 Repairs and Replacements .. 29
 7.1 Safety Warning - Disconnection from Power Supply 29
 7.2 Safety Warning - Refractory Fibre Insulation 29
 7.3 Control Panel Removal .. 29
 7.4 Temperature Controller Replacement 30
 7.5 Solid-State Relay Replacement 30
 7.6 Thermocouple Replacement ... 30
 7.7 Element Replacement .. 31
 7.8 Fuse Replacement ... 31

8.0 Fault Analysis .. 32
 A. Oven Does Not Heat Up ... 32
 B. Oven Overheats ... 32

9.0 Wiring Diagrams .. 33
 9.1 WV-11-01 ... 33
9.2 WS-10-01 - Isolating for 208 V version only .. 34

10.0 Fuses and Power Settings ... 35
 10.1 Fuses ... 35
 10.2 Power Settings ... 35

11.0 Specifications .. 36
 11.1 Environment .. 36
1.0 Symbols and Warnings

1.1 Switches and Lights

Instrument switch: when the instrument switch is operated the temperature control circuit is energised.

1.2 General Warnings

DANGER – Electric shock. Read any warning printed next to this symbol.
WARNING: Risk of fatal injury.

DANGER – Hot surface. Read any warning printed next to this symbol.
WARNING: All surfaces of a product may be hot.

DANGER – Read any warning printed next to this symbol.

Caution – Double Pole/Neutral Fusing
2.0 Installation

2.1 Unpacking and Handling

When unpacking or moving the product, always lift by its base; do not use the door or any other projecting cover or component to support the equipment when moving it. Use a fork lift or pallet truck to move the product; position the product on a level surface and use an adequate number of personnel to safely move the product into position.

Carefully remove any packing material from inside and around the product before use. Avoid damaging the surrounding insulation when removing packing materials.

Locate the shelves as required.

NOTE: This product contains Refractory Ceramic Fibre (also known as Alumino Silicate Wool - ASW). For precautions and advice on handling this material see section 7.2.

2.2 Siting and Setting Up

Place the product on a level surface in a well ventilated area.

Site away from other sources of heat and on a non-flammable surface that is resistant to accidental spillage or hot materials.

The surface on which the equipment is mounted should be stable and not subject to movement or vibrations.

The height of the mounting surface is important to avoid operator strain when loading and unloading samples.

Unless otherwise stated elsewhere in this manual, ensure that there is at least 150 mm of free space around the back and sides of the product. Clear space is required above the product to dissipate heat.
Depending on the application of the product, it may be appropriate to position it under an extraction hood. Ensure the extraction hood is switched on during use.

Ensure that the product is placed in such a way that it can be quickly switched off or disconnected from the electrical supply.

Under no circumstances should any objects be placed on top of the product. Always ensure that any vents on the top of the product are clear of any obstruction. Always ensure all cooling vents and cooling fans (if fitted) are clear of any obstruction.

2.3 Electrical Connections

Connection by a qualified electrician is recommended.

All models covered by this manual may be ordered for single phase A.C. supply, which may be Live to Neutral non-reversible, Live to Neutral reversible or Live to Live. Check the product rating label before connection. The supply voltage should agree with the voltage on the label and the supply capacity should be sufficient for the current on the label.

The supply should be fused at the next size equal to, or higher than the current on the label. A table of the most common fuse ratings is also given towards the back of this
manual. When the mains cable is factory fitted, internal fuses are also fitted. It is essential that the operator ensures that the product is correctly fused.

Products with a factory fitted supply cable are designed to be wired directly to an isolator or fitted with a line plug.

Products without a factory fitted supply cable require a permanent connection to a fused and isolated supply. The product’s electrical access panel should be temporarily removed, and connections made to the internal terminals.

If the product is to be connected by line plug. The plug should be within reach of the operator and should be easy to remove.

When connecting the product to an isolating switch ensure that both conductors (single phase) or on all live conductors (three phase), and should be within reach of the operator.

The supply MUST incorporate an earth (ground).

Electrical Connection Details:

<table>
<thead>
<tr>
<th>Supply</th>
<th>Terminal Label</th>
<th>Cable Colour</th>
<th>Supply Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Live - Neutral</td>
<td>Reversible or Live-Live</td>
</tr>
<tr>
<td>1-phase</td>
<td>L</td>
<td>Brown</td>
<td>to live</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Blue</td>
<td>to neutral</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>Green/ Yellow</td>
<td>to earth (ground)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply</th>
<th>Terminal Label</th>
<th>Cable Colour</th>
<th>Supply Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L1</td>
<td>Black</td>
<td>to phase 1</td>
</tr>
<tr>
<td>L2</td>
<td>L2</td>
<td>Black</td>
<td>to phase 2</td>
</tr>
<tr>
<td>L3</td>
<td>L3</td>
<td>Black</td>
<td>to phase 3 (except 2-phase)</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Light Blue</td>
<td>to neutral (except delta)</td>
</tr>
<tr>
<td>PE</td>
<td>PE</td>
<td>Green/ Yellow</td>
<td>to earth (ground)</td>
</tr>
</tbody>
</table>
3.0 2416 Controller

3.1 Description

This manual applies to the 2416, 2416CG and 2416P8 controllers. Special customer requirements may result in changes to the available parameters and the navigation diagram. It is not possible to list all the possibilities in this manual.

2416CG Controller

The Eurotherm model 2416CG is a digital instrument with PID control algorithms which may be used as a simple controller or an 8-segment programmer. The 2416P8 is an eight-program model in which the programs can be stored independently or can be linked by a “call” parameter to form a single long program.

The 2416 Controller features:

- Easy use as a simple temperature controller, where on setting the required temperature the controller immediately attempts to reach and maintain it. Fig.1 indicates the type of temperature response when used in this way.
- By using one program segment, the control can be extended to include ramp-to-set-point. Fig.2 shows the effect.
- Alternatively, the 2416 Controller may be used as an 8-segment programmer, with each segment being a "Ramp", a "Step", a "Dwell", or "End". The program can be set to cycle if required. See fig. 3.
- Optional “modules” are available, in particular:
 - RS232 and RS432/485 digital communications modules;
 - Analogue communication modules;
 - “PDSIO” modules for communication with other controllers of similar or higher specification, for example, to allow cascade control;
 - Alarm modules, which can be used to drive visible or audible alarms, or to provide volt-free contacts for customer use.
3.0 2416 Controller

Fig 1 - Simple Control

Fig 2 - Control with Ramp-to-Setpoint

- Seg 1 = Ramp
- Sep 2 = End (Dwell)

Fig 3 - A Program

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Temperature</td>
</tr>
<tr>
<td>T2</td>
<td>Time</td>
</tr>
<tr>
<td>SP</td>
<td>Setpoint</td>
</tr>
<tr>
<td>AT</td>
<td>Actual Temperature</td>
</tr>
<tr>
<td>WSP</td>
<td>Working Setpoint</td>
</tr>
<tr>
<td>R</td>
<td>Ramp</td>
</tr>
<tr>
<td>D</td>
<td>Dwell</td>
</tr>
<tr>
<td>S</td>
<td>Step</td>
</tr>
<tr>
<td>E</td>
<td>End</td>
</tr>
</tbody>
</table>
3.2 Operation

Most Carbolite Gero products are fitted with an instrument switch which cuts off power to the controller and other parts of the control circuit. See section 5.0 for operating instructions.

To operate the 2416 Controller there must be power to the furnace or oven and the instrument switch must be on. If a time switch is included in the furnace or oven circuit, this must be in an ON position.

2416CG - Operation

When switched on, the controller lights up, goes through a short test routine and then displays the measured temperature and setpoint. Depending on its state when it was last switched off, it may start to control to the current setpoint of program. The output light glows or flashes to indicate that the control is occurring.

The buttons and indicators are used for the following purposes:

Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Output Light</td>
</tr>
<tr>
<td>B</td>
<td>Not Used</td>
</tr>
<tr>
<td>C</td>
<td>Page</td>
</tr>
<tr>
<td>D</td>
<td>Scroll</td>
</tr>
<tr>
<td>E</td>
<td>Down</td>
</tr>
<tr>
<td>F</td>
<td>Up</td>
</tr>
<tr>
<td>G</td>
<td>Run/Hold</td>
</tr>
<tr>
<td>H</td>
<td>Setpoint Temperature (SP)</td>
</tr>
<tr>
<td>I</td>
<td>Measured Temperature</td>
</tr>
</tbody>
</table>
3.0 2416 Controller

<table>
<thead>
<tr>
<th>Auto/Manual</th>
<th>Disabled.</th>
<th>The unit is always in 'Auto' mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN/HOLD</td>
<td>-</td>
<td>Used to start, stop or pause a program. Short presses cause it to alternate between 'Run' and 'Hold', but if it is held for 2 seconds the programmer goes into 'Reset' mode where it behaves as a simple controller.</td>
</tr>
<tr>
<td>Up + Down</td>
<td>▲ + ▼</td>
<td>To adjust the value of a parameter. Used to change the setpoint when the unit is being used as a simple controller ('Reset' mode). Holding down gives an accelerated parameter change.</td>
</tr>
<tr>
<td>Page</td>
<td>ิ</td>
<td>Allows access to the parameters within the controller; most lists and parameters are hidden from the operator as they contain factory-set values which should not be altered. A single press of the page key shows the temperature units, normally °C; further presses reveal the lists indicated in the Navigation Diagram.</td>
</tr>
<tr>
<td>Scroll</td>
<td>ล</td>
<td>Allows access to the parameters within a list. A single press displays the temperature units; further presses reveal the parameters in the current list. Some parameters are display-only, others may be altered by the operator.</td>
</tr>
<tr>
<td>Page + Scroll</td>
<td>ิ + ล</td>
<td>Press together to cause an immediate return to the 'Home List'</td>
</tr>
<tr>
<td>Run & Hold</td>
<td></td>
<td>Indicate the current mode: 'Run', 'Hold', or 'Reset' (Reset: both lights off). 'Run' flashes at the end of a program. 'Hold' flashes during holdback (when the program is paused to allow the temperature to catch up with a heating or cooling rate which is too fast).</td>
</tr>
<tr>
<td>Output Indicator</td>
<td></td>
<td>OP1 indicates that the programmer is calling for heat to be supplied. OP2 is not used.</td>
</tr>
<tr>
<td>SP2 and REM</td>
<td></td>
<td>Not generally used; indicate 'Second' or 'Remote' setpoint in use.</td>
</tr>
</tbody>
</table>

Operation as a Simple Controller

Press RUN/HOLD for 2 seconds to go into 'Reset' mode. Use down ▼ or up ▲ from the 'Home List' (i.e. when the temperature is displayed) to adjust the setpoint. The unit starts to control in the way indicated in Fig. 1.

Note that to use the Ramp Rate feature, as in Fig. 2, it is necessary to create a program. See the following sections.
3.3 Programming

Note that a currently active segment cannot be altered - put the programmer into 'Hold' or 'Reset' whenever it is necessary to do so to alter a parameter. Go into 'Reset' mode (i.e. press RUN/HOLD for 2 seconds) before starting to create or modify a program.

Press page \(\text{Page} \) until 'ProG LiSt' is displayed.

Press scroll \(\text{Scroll} \) to reveal the 'Holdback' and 'Loop Count' parameters. See sections 3.3.3 and 3.3.4 for a description of these.

Press scroll \(\text{Scroll} \) to display 'SEG.n' (segment number); use down \(\downarrow \) or up \(\uparrow \) to move to the segment to be adjusted or created.

Press scroll \(\text{Scroll} \) to see the 'tYPE' (segment type); use down \(\downarrow \) or up \(\uparrow \) to change the required segment type – see the table below.

Press scroll \(\text{Scroll} \) to access the parameters appropriate to the type of segment chosen – see the following table – and use down \(\downarrow \) or up \(\uparrow \) to alter the values.

The final segment should be of type 'End', unless all program segments are used. Segments after 'End' are ignored.

<table>
<thead>
<tr>
<th>Segment Type</th>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RmP.r</td>
<td>TGt</td>
<td>The target setpoint for this segment</td>
</tr>
<tr>
<td></td>
<td>rATE</td>
<td>The ramp rate (rate of temperature change) in °/ minute</td>
</tr>
<tr>
<td>RmP.t</td>
<td>TGt</td>
<td>The target setpoint for this segment</td>
</tr>
<tr>
<td></td>
<td>dur</td>
<td>The duration of the segment. The controller calculates the rate of temperature rise necessary to achieve this duration.</td>
</tr>
<tr>
<td>Dwel</td>
<td>dur</td>
<td>The time in minutes to remain at the previous target temperature. 10ths of a minutes are allowed.</td>
</tr>
<tr>
<td>SteP</td>
<td>tGt</td>
<td>A new target temperature to be achieved as quickly as possible.</td>
</tr>
<tr>
<td>CaLL</td>
<td>PrG.n</td>
<td>Only applicable to 2416P8. Calls another stored program given by 'PrG.n' as a subroutine, running it the number of times given by 'cyc.n'</td>
</tr>
<tr>
<td></td>
<td>cyc.n</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>End.t</td>
<td>'Dwel' holds the temperature at the last target value. 'RSET' returns to simple controller operation; if the setpoint is set to zero then this effectively turns the heating off. 'SoP' sets the power to 0% - use of this is not recommended.</td>
</tr>
</tbody>
</table>

3.3.1 Programming Tips

Make sure the basic setpoint is set to zero to avoid unexpected heating at the end of a program.
If all segments are used so that there is no 'End' segment, then on completion the program automatically goes into 'Dwell'.

Dwell segments of length zero can be included. This is a way of allowing space for future program changes.

For an example of program creation, see section 3.3.6.

3.3.2 Multi-program model (2416P8)

The 'Program Edit' list contains the extra parameter 'PrG.n' and the 'Run' list contains the extra parameter 'PrG'. These features allow selection of the program to be edited or to be operated.

The extra segment type 'cALL' allows one program to call another as a subroutine; use this feature to create one or more long programs.

3.3.3 Holdback

"Holdback' can be used to prevent the program from operating ahead of the actual heating or cooling.

In the program list, scroll the 'Holdback' parameter and use down or up to set the holdback type as follows:

<table>
<thead>
<tr>
<th>Band</th>
<th>Holdback applies to both heating and cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo</td>
<td>Holdback applies to heating only</td>
</tr>
<tr>
<td>Hi</td>
<td>Holdback applies to cooling only</td>
</tr>
<tr>
<td>Off</td>
<td>Holdback is off</td>
</tr>
</tbody>
</table>

Set 'Hb.V' to the value in °C beyond which holdback is to operate. Type 'BAnd' and a value of 10 °C is often a suitable combination, if holdback is required. In this case, if the actual temperature deviates outside ±10 °C from the working setpoint, the holdback lamp of the front of the controller flashes and the program is held up until the temperature comes within range again.

The standard setting for holdback is OFF.

3.3.4 Program Cycling

The 'Loop Count' parameter 'CYC.n' can be set to control the number of times the program is run.

If 'CYC.n' = 1, the program stops at the end segment.

If 'CYC.n' = 5 (for example), the program runs 5 times: at the 'End' segment it returns to segment 1, until the 5th time through when it stops.

If 'CYC.n' = cont, the program never ends: it cycles continuously.

3.3.5 Running a Program

Press Run/ Hold to light up the 'Run' light. The program starts to operate.

To view the progress of a program from the 'Home' list, press scroll to reveal the current segment ('SEG') and the total program time remaining in hours ('PrG.t').
For a more detailed view, press page \(\text{F1}\) to access the 'Run' list page and scroll \(\text{F2}\) to see its contents as shown in the Navigation Diagram below. Provided the unit is first put into 'Hold' mode, temporary changes may be made to parameters; these apply only until the program ends or is reset.

To pause a program, press Run/ Hold; the 'Hold' light comes on. To terminate a program, press Run/ Hold for 2 seconds; the 'Run' and 'Hold' lights go out.

While the program is operating, the working setpoint is shown in the lower display.

3.3.6 Program example

The following sequence of entries creates and runs the program.

1. Press page \(\text{F1}\) key until 'ProG LiSt' is displayed.
2. Press scroll \(\text{F2}\) until 'CYC.n' is displayed and use the arrow key to select 1.
3. Press scroll \(\text{F2}\) until 'SEG.n' is displayed and use the arrow key to select 1.
4. Press scroll \(\text{F2}\) until 'tYPE' is displayed and use the arrow key to select rmP.r.
5. Press scroll \(\text{F2}\) until 'tGt' is displayed and use the arrow key to select 600.
6. Press scroll \(\text{F2}\) until 'rAtE' is displayed and use the arrow key to select 5.0.
7. Press scroll \(\text{F2}\) until 'SEG.n' is displayed and use the arrow key to select 2.
8. Press scroll \(\text{F2}\) until 'tYPE' is displayed and use the arrow key to select dwEl.
9. Press scroll \(\text{F2}\) until 'dur' is displayed and use the arrow key to select 60.0.
10. Press scroll \(\text{F2}\) until 'SEG.n' is displayed and use the arrow key to select 3.
11. Press scroll \(\text{F2}\) until 'tYPE' is displayed and use the arrow key to select rmP.t.
12. Press scroll \(\text{F2}\) until 'tGt' is displayed and use the arrow key to select 400.
13. Press scroll \(\text{F2}\) until 'dur' is displayed and use the arrow key to select 60.0.
14. Press scroll \(\text{F2}\) until 'SEG.n' is displayed and use the arrow key to select 4.
15. Press scroll \(\text{F2}\) until 'tYPE' is displayed and use the arrow key to select 'dwEl'.'.
16. Press scroll \(\text{F2}\) until 'dur' is displayed and use the arrow key to select 30.
17. Press scroll \(\text{F2}\) until 'SEG.n' is displayed and use the arrow key to select 5.
18. Press scroll \(\text{F2}\) until 'tYPE' is displayed and use the arrow key to select rmP.r.
19. Press scroll \(\text{F2}\) until 'tGt' is displayed and use the arrow key to select 30.
20. Press scroll \(\text{F2}\) until 'rAtE' is displayed and use the arrow key to select 5.0.
21. Press scroll \(\text{F2}\) until 'SEG.n' is displayed and use the arrow key to select 6.
22. Press scroll \(\text{F2}\) until 'tYPE' is displayed and use the arrow key to select 'End'.'.
23. Press scroll \(\text{F2}\) until 'End.t' is displayed and use the arrow key to select 'dwEl'.'.
24. Press the page \(\text{F1}\) key until you return to the main display.
25. Press the 'Run' key. The program operates.
3.4 Controller Options

As options can be ordered in a variety of combinations and for a variety of purposes, exact instructions are not given here. The full Eurotherm manual may be required to determine customer parameter settings. To reveal or hide parameters in the controllers it is necessary to go into configuration mode, a security code is needed. Please consult Carbolite Gero.

3.4.1 Digital Communications - RS232

If the RS232 option is supplied, the furnace is fitted with one sub-miniature D-socket connected to the controller comms module. RS232 is suitable for direct connection to a personal computer (PC) using a “straight through” cable as follows (the linked pins at the computer end are recommended but may not be necessary). The cable is usually 9-pin at the furnace end and 9-pin at the computer, but other alternatives are shown in parentheses.

<table>
<thead>
<tr>
<th>Product end of cable female (25-pin) 9-pin</th>
<th>RS232 Cable: product to PC</th>
<th>Computer end of cable 9-pin (25-pin) male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx</td>
<td>(2)</td>
<td>3</td>
</tr>
<tr>
<td>Tx</td>
<td>(3)</td>
<td>2</td>
</tr>
<tr>
<td>Com</td>
<td>(7)</td>
<td>5</td>
</tr>
</tbody>
</table>

```
Rx (3) ---------- 3 (2) Tx
Tx (2) ---------- 2 (3) Rx
Com (7) --------- 5 (7) Com
```

7,8 (4,5) Link together
1,4,6 (6,8,20) Link together

3.4.2 Digital Communications - RS485

If an RS485 option is supplied, the furnace is fitted with two D-sockets. Connection between products is by “straight” cable as follows:

<table>
<thead>
<tr>
<th>Product end of cable female (25-pin) 9-pin</th>
<th>RS485 Cable: product to PC</th>
<th>Computer end of cable 9-pin (25-pin) female</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>(2)</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>(3)</td>
<td>2</td>
</tr>
<tr>
<td>Com</td>
<td>(7)</td>
<td>5</td>
</tr>
</tbody>
</table>

```
- (3) ---------- 3 (2) Tx
+ (2) ---------- 2 (3) Rx
Com (7) --------- 5 (7) Com
```

3.4.3 Comms Address

Typically the comms address is set to 1, but this can be changed. In the case of RS485 and multiple instruments it is necessary to set different addresses. To change the address value, access the level 2 list. In level 2 press the page key until the COMMS parameter is displayed. Press up ▲ down ▼ to select the address value.
3.4.4 Alarm Option

When an alarm board is fitted, which consists of a relay with voltage free contacts, for operator use, the contacts are taken to a panel plug on the control panel, wired as indicated:

The purpose of the 2 amp fuse is to break the circuit to prevent overloading on the circuit due to high voltage.

The instrument configuration and parameters available to the operator depend on the customer requirements.

3.5 Temperature Controller Replacement

Before handling the controller: wear an anti-static wrist strap or otherwise avoid any possibility of damage to the unit by static electricity. Refer to the detailed instructions supplied with the replacement controller.

Ease apart the two lugs at the side; grip the instrument and withdraw it from its sleeve; push in the replacement.
3.6 Navigation Diagram
4.0 2132 Over-Temperature Controller Description (if fitted)

4.1 Description

This over-temperature controller is fitted and supplied ready to use by Carbolite Gero. It is a digital instrument with a latching alarm, requiring no additional panel controls. The controller features easy setting of over-temperature setpoint and reading of current temperature by the over-temperature sensor.

4.2 Operation

4.2.1 Controls

Most Carbolite Gero products are fitted with an instrument switch which cuts off power to the controller and other parts of the control circuit.

To operate the controller, power must be supplied to the product and the instrument switch must be on. If a time switch is included in the product circuit, this must be in the 'ON' position.

When an over-temperature condition occurs, the controller cuts the power to a contactor, which in turn cuts power to the heating elements. Power is not restored until the controller is 'reset'.

Some components will operate after the over-temperature feature isolates the power supply e.g. cooling fans will continue to operate, provided that there is a power supply to the product. In some cases the product may not do so, if other options (such as a door switch) are fitted.
4.2.2 Operation

When switched on, the controller lights up, goes through a short test routine and then displays the measured temperature or the over-temperature setpoint.

The page key allows access to parameter lists within the controller.

A single press of the page key displays the temperature units, normally set to °C; further presses reveal the lists indicated in the navigation diagram. See section 4.4.

The scroll key allows access to the parameters within a list. Some parameters are display-only; others may be altered by the operator.

A single press of the scroll key in the 'Home' list displays the temperature units; further presses reveal the parameters in the current list indicated in the navigation diagram.

To return to the 'Home' list at any time, press page and scroll together, or wait for 45 seconds.

The down and up keys are used to alter the setpoint or other parameter values.

4.2.3 Over-Temperature Operation

Use down and up to alter the over-temperature setpoint. This should normally be set a little above the working temperature (for example 15 °C above). The product is supplied with the over-temperature set at 15 °C above the furnace or oven maximum working temperature.

Press scroll twice view the present temperature as measured by the over-temperature controller. Press it twice, the first press shows the temperature units (°C).

4.2.4 Over-Temperature Alarm

If an over-temperature condition occurs, the OP2 indicator flashes and an alarm message 2FSH also flashes, alternating with the setpoint. Power to the heating elements is disconnected.

4.2.5 Resetting the Over-Temperature Alarm

To acknowledge the alarm press scroll and page together.

If the alarm is acknowledged while there is still an over-temperature condition, the OP2 indicator stops flashing but continues to glow. The 2FSH alarm continues to flash until the over-temperature condition is cleared (by the temperature falling), when normal operation resumes.

If the alarm is acknowledged when the temperature has dropped (or after the over-temperature setpoint has been raised) so that the over-temperature condition no longer exists, then the furnace or oven immediately resumes normal operation.

4.2.6 Sensor Break

The over-temperature cut-out system also operates if the over-temperature control thermocouple breaks or becomes disconnected. The message S.br flashes where the measured temperature is normally displayed.
4.3 Audible Alarm

If an audible alarm is supplied for use with the over-temperature controller, it is normally configured to sound on over-temperature condition and to stop sounding when the alarm is acknowledged as given in section 4.2.

Note: the alarm may sound during controller start-up.

4.4 Navigation Diagram

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>Home List</td>
<td>Black = Progress</td>
</tr>
<tr>
<td>OTSP</td>
<td>Over-Temperature Setpoint</td>
<td>Dashed = Through to other options</td>
</tr>
<tr>
<td>AL</td>
<td>Access List</td>
<td>For factory access to list and parameters not available to the operator.</td>
</tr>
</tbody>
</table>
5.0 Operation

5.1 Operating Cycle

The product is fitted with an instrument switch. The switch cuts off power to the controllers and elements. The circulation fan will operate when the instrument switch is on. An optional door switch may be fitted. If so, ensure that the door is closed to operate the fans and heating elements.

Turn on the instrument switch to activate the temperature controllers. The controllers illuminate and go through a short test cycle.

Over-Temperature option only. If the digital over-temperature option has not yet been set as required, set and activate it according to the over-temperature controller instructions.

The product will heat up according to the controller setpoint or program, unless a time switch is fitted and switched off.

Over-Temperature option only. If the over-temperature circuit has tripped, an indicator on the over-temperature controller flashes and the heating elements are isolated. Find and correct the cause before resetting the over-temperature controller according to the instructions supplied.

To switch the product off, turn off the instrument switch. If the product is to be left unattended, isolate the electricity supply.

DO NOT switch off if the temperature is above 100 °C - damage could be caused to the fan and motor. Adjust the controller to allow the temperature to fall.

5.2 Over-Temperature Control (if fitted)

The over-temperature controller should typically be set at 15 °C above the main controller. If an over-temperature condition occurs, check the main controller is functioning correctly.

An over-temperature condition cuts off power to the heating elements. A light in the over-temperature controller flashes. To reset this, refer to the over-temperature control section of this manual.

5.3 Explosive Vapours

Unless your product includes the stoving and curing option, this model is not suitable for drying or heat treatment applications where vapours are released that are combustible or which can form explosive mixtures with air. Carbolite Gero manufactures other products suitable for these applications.
5.4 Variable Speed Fan (if fitted)

If fitted, the variable speed control is fitted in the air circulation fan circuit. A panel mounted rotary dial is used to control the speed.

Please note that there is a minimum setting at which the fan motor starts up when the product is switched on. It is recommended that the speed of the fan is not set below 50%, as there would be very little air flow around the chamber and also risk overheating the fan motor.

5.5 Exhaust Fan (if fitted)

To operate the exhaust fan use the fan switch on the control panel; this is only functional when the instrument switch is on.

The level of air exhaust can be controlled by adjusting the slider under the exhaust box.

When the exhaust fan is turned on, there may be a drop in internal temperature before the product recovers to the setpoint value.

The airflow should be adjusted to the minimum required by the process to reduce the amount of energy wasted in heating air.

5.6 Stoving and Curing (if fitted)

The stoving and curing option adds an explosion relief panel and a powered exhaust fan. With this option the exhaust fan operates continuously when the product is switched on.

A pressure switch detects that there is sufficient air flow through the chamber. If the pressure switch does not detect sufficient air flow, a fault light illuminates and heating is disabled.

At least 610 mm free space must be left around the explosion relief panel to allow this to break out if there is a rapid build up of pressure inside the chamber.

Please note that if the stoving and curing option is fitted, there may be an increase in the power rating of the product. See the product rating label located on the side panel of the product for correct power rating.

5.6.1 Pre-heater (if fitted)

Products with the stoving and curing option may also be fitted with a pre-heater that pre-heats the incoming air to the same temperature set on the main controller.

The temperature of the pre-heater is controlled by the main controller, but measured by a separate thermocouple.
5.7 HTMA - Manual Gas Control (if fitted)

The two gas solenoid valves are controlled by a three position switch located on the front of the product.

When the switch is in the Purge position the gas flows through the Purge flow meter. This is a high flow used to purge the chamber at the beginning of the cycle.

When the switch is in the Process position the gas flows through the Process flow meter. This is a low flow used when the process is operating.

When the switch is in the off position then no gas flows.

5.8 HTMA - Automatic Gas Control (if fitted)

Eurotherm 3508 Controller/Nanodac Option required

The two gas solenoid valves are controlled by program segment output relays in the main program controller.

Program segment relay 1 controls the Purge flow. This is a high flow used to purge the chamber at the beginning of the cycle. The purge time is set as a dwell period at ambient temperature.

Program segment relay 2 controls the Process flow. This is a low flow and should be on during the heat and cool down stages of the cycle.

The program segment relay outputs are set to on or off when the controller is being programmed. See controller handbook for details.

5.9 Oxygen Sensor (if fitted)

The gas outlet is fitted with a probe that measures the quantity of oxygen in the exhaust gas flow. This figure is displayed on the main temperature controller. If a data logger is fitted, the measured oxygen level is recorded alongside the setpoint and temperature data throughout the process, and is displayed as a percentage value.

5.9.1 Recommended Gas Flow Rates

Please see sections 5.7 and 5.8 for information on manual and automatic gas flow rates.

Gas flow rates are configurable to suit individual process requirements.

This product is capable of achieving oxygen levels down to 50 ppm (parts per million) within the chamber. To achieve this level, it is recommended that a purge flow rate is set at litres per minute for 45 minutes, followed by a process flow rate of 10-12 litres per minute.

5.10 Door Switch (if fitted)

If ordered, the door switch will isolate the heating elements and circulation fan. The door switch is operated when the door is opened causing the heating elements and air circulation fan to be switched off.
6.0 Maintenance

6.1 General Maintenance
Preventive rather than reactive maintenance is recommended. The type and frequency depends on the product use; the following are recommended.

6.2 Maintenance Schedule

CUSTOMER QUALIFIED PERSONNEL

DANGER! ELECTRIC SHOCK. Risk of fatal injury. Only electrically qualified personnel should attempt these maintenance procedures.

<table>
<thead>
<tr>
<th>Maintenance Procedure</th>
<th>Method</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily Weekly</td>
</tr>
</tbody>
</table>
| Safety | | Monthly Bi-
| Safety Switch Function | With the gas supply on but the oven at ambient, open the door and make | Annually |
| Safety Switch Function | sure the gas ceases to flow | |
| Over-Temperature Safety Circuit (if | Set an over-temperature setpoint lower than the displayed temperature | |
| fitted) | and check for an over-temperature alarm as detailed in this manual | |
| Over-Temperature Safety Circuit (if | Electrical measurement | |
| fitted) | | |
| Door Seal | Visual inspection - check for splits or fraying | |
| Door Seal | Replacement | |
| Electrical Safety (external) | Visual check of external cables and plugs | |
| Electrical Safety (internal) | Physically check all connections and cleaning of the power plate area | |
| Non-Return Valve | Check that the small ball in the non-return valve is free to move | |
| | | |
| Function | | |
| Temperature Calibration | Tested using certified equipment, frequency dependent on the standard | |
| Operational Check | Check that all functions are working normally | |

25
6.0 Maintenance

<table>
<thead>
<tr>
<th>Operational Check</th>
<th>Thorough inspection and report incorporating a test of all functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Cooling Fans (if fitted)</td>
<td>Check whether the cooling fans are working</td>
</tr>
<tr>
<td>Circulating Fan (if fitted)</td>
<td>Visual check to see if it is running</td>
</tr>
<tr>
<td>Circulating Fan (if fitted)</td>
<td>Check bearings and replace if necessary</td>
</tr>
<tr>
<td>Element Circuit</td>
<td>Electrical measurement</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Measure the current drawn on each phase / circuit</td>
</tr>
<tr>
<td>Shelves</td>
<td>Visual check for fit and damage</td>
</tr>
</tbody>
</table>
6.2.1 Cleaning

The product's outer surface may be cleaned with a damp cloth. Do not allow water to enter the interior of the case or chamber. Do not clean with organic solvents.

> Under no circumstances should any objects be placed on top of the product. Always ensure that any vents on the top of the product are clear of any obstruction. Always ensure all cooling vents and cooling fans (if fitted) are clear of any obstruction.

6.3 Calibration

After prolonged use, the controller and/or thermocouple may require recalibration. This is important for processes that require accurate temperature readings or for those that use the product close to its maximum temperature. A quick check using an independent thermocouple and temperature indicator should be made from time to time to determine whether full calibration is required. Carbolite Gero can supply these items. Depending on the controller fitted, the controller instructions may contain calibration instructions.

6.4 After-Sales Service

Carbolite Gero Service has a team of Service Engineers who can offer repair, calibration and preventive maintenance of furnace and oven products both at the Carbolite Gero factory and at customers’ premises throughout the world. A telephone call or email often enables a fault to be diagnosed and the necessary parts to be despatched. In all correspondence please quote the serial number and model type given on the rating label of the product. The serial number and model type are also given on the back of this manual when supplied with the product. Carbolite Gero Service and Carbolite Gero contact information can be found on the back page of this manual.

6.5 Recommended Spare Parts and Spare Parts Kit

Carbolite Gero can supply individual spare parts or a kit of the items most likely to be required. Ordering a kit in advance can save time in the event of a breakdown. Each kit consists of a fan and motor assembly, a thermocouple, a solid state relay, an element (or set of elements) and a door seal. Individual spare parts are also available. When ordering spare parts please quote the model details as requested above.

6.6 Power Adjustment

The control system incorporates electronic power limiting, but for the model listed in this manual the power limit is set to 100%. The power limit parameter OP.Hi may be accessible to the operator, but should not generally be altered.
6.0 Maintenance

In some cases the supply voltage may be outside the range 220-240 V or the 3-phase equivalent, the power limit parameter may be set to a value other than 100%. Do not increase the value to 100%, see section 10.0 for details of power limit settings.
7.0 Repairs and Replacements

7.1 Safety Warning - Disconnection from Power Supply

Immediately switch the product off in the event of unforeseen circumstances (e.g. large amount of smoke). Allow the product to return to room temperature before inspection.

Always ensure that the product is disconnected from the electrical supply before repair work is carried out.

Caution: Double pole/neutral fusing may be used in this product.

7.2 Safety Warning - Refractory Fibre Insulation

Insulation made from High Temperature Insulation Wool

Refractory Ceramic Fibre, better known as (Alumina silicate wool - ASW).

This product contains alumino silicate wool products in its thermal insulation. These materials may be in the form of blanket or felt, formed board or shapes, slab or loose fill wool.

Typical use does not result in any significant level of airborne dust from these materials, but much higher levels may be encountered during maintenance or repair.

Whilst there is no evidence of any long term health hazards, it is strongly recommended that safety precautions are taken whenever the materials are handled.

Exposure to fibre dust may cause respiratory disease.

When handling the material, always use approved respiratory protection equipment (RPE-eg. FFP3), eye protection, gloves and long sleeved clothing.

Avoid breaking up waste material. Dispose of waste in sealed containers.

After handling, rinse exposed skin with water before washing gently with soap (not detergent). Wash work clothing separately.

Before commencing any major repairs it is recommended to make reference to the European Association representing the High Temperature Insulation Wool industry (www.ecfia.eu).

Further information can be provided on request. Alternatively, Carbolite Gero Service can quote for any repairs to be carried out either on site or at the Carbolite Gero factory.

7.3 Control Panel Removal

Disconnect the product from the electrical supply.
Control panel - HT models. Remove the screws holding the panel. Note that the panel remains connected by wiring. Do not disconnect any wiring without first making a careful note of all the connections.

Internal element cover. Open the door, remove any screws holding the panel and any clips holding thermocouples in position and remove the cover.

7.4 Temperature Controller Replacement

Refer to the controller instructions for more information on how to replace the temperature controller.

7.5 Solid-State Relay Replacement

Disconnect the product from the power supply and remove the appropriate cover as given above.

Make a note of the wire connections to the solid state relay and disconnect them.

Remove the solid state relay from the base panel or aluminium plate.

Replace and reconnect the solid state relay ensuring that the bottom of it has good thermal contact with the base panel or aluminium plate.

Replace the access panel.

7.6 Thermocouple Replacement

Disconnect the product from the power supply. Remove terminal cover to gain access to the thermocouple connections. Make a note of the thermocouple connections.

<table>
<thead>
<tr>
<th>Thermocouple leg</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive (type K)</td>
<td>green</td>
</tr>
<tr>
<td>negative</td>
<td>white</td>
</tr>
</tbody>
</table>

Undo any clips holding the thermocouple. Remove the air guide from the oven chamber. Disconnect the thermocouple from its terminal block. Unscrew the compression fitting inside the chamber and pull the thermocouple into the chamber. Cut through the thermocouple behind the olive and remove the two parts. Loosely assemble compression fitting with a new ferrule. Feed in new thermocouple through from the back. Tighten the compression fitting. Refit the air guide. Bend the thermocouple to match the shape of the previous part and refit any clips.

Refit the element access panel.

Compression fittings are only fitted to moisture extraction and stoving and curing products. If fitted, ferrules need replacing.
7.7 Element Replacement

To find out whether the element failure was caused by a fault in the control circuit, operate the oven at a low temperature and check that it is functioning correctly. To replace the element, remove the rear panel and internal air guides. The element terminals are accessed from the back.

Disconnect the wires from the element terminals. Ferrules in the compression fitting are designed for single usage and need to be replaced with the element. Remove the element by undoing the element fitting. Slightly withdraw the element. Cut through the ferrules and the element. Remove the three parts of the element.

Install a new element from inside the chamber. Install the new ferrules and replace the compression fitting. Tighten the compression fitting to ensure the chamber is gas tight.

7.8 Fuse Replacement

Fuses are accessed by removal of the panel as explained in 'Panel Removal' section. Depending on the model, supply fuses and control circuit fuses may be mounted in their own holders, or may be on a circuit board that contains an EMC filter. The fuses are marked with their ratings.

Take care not to disconnect the wires leading from the EMC filter without first recording their positions: they must be reconnected to the correct terminals.
8.0 Fault Analysis

A. Oven Does Not Heat Up

<table>
<thead>
<tr>
<th>Step</th>
<th>Condition</th>
<th>Possible Causes</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The temperature controller is OFF</td>
<td>No power from supply</td>
<td>Check the fuses in the supply line</td>
</tr>
<tr>
<td>2.</td>
<td>The temperature controller is ON</td>
<td>The controller shows a very high temperature or a code such as EEE or --- or S.br</td>
<td>The temperature sensor has broken or has a wiring fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The controller shows a low temperature</td>
<td>The SSR could be failing to switch on due to internal failure, faulty logic wiring from the controller, or faulty controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There are no lights glowing on the controller</td>
<td>The controller may be faulty or not receiving a supply due to a faulty switch or a wiring fault</td>
</tr>
</tbody>
</table>

B. Oven Overheats

<table>
<thead>
<tr>
<th>Step</th>
<th>Condition</th>
<th>Possible Causes</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oven only heats up when the instrument switch is ON</td>
<td>The controller shows a very high temperature</td>
<td>The controller is faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The controller shows a low temperature</td>
<td>The thermocouple may have been shorted out or may have been moved out of the oven</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The thermocouple may be connected the wrong way round</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The controller may be faulty</td>
</tr>
<tr>
<td>2.</td>
<td>Oven heats up when the instrument switch is OFF</td>
<td>The SSR has failed "ON"</td>
<td>Replace the SSR. Check for an accidental wiring fault which could have overloaded the SSR</td>
</tr>
</tbody>
</table>
9.0 Wiring Diagrams

9.1 WV-11-01

Key

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1, F2</td>
<td>Fuses</td>
</tr>
<tr>
<td>FIL</td>
<td>Filter</td>
</tr>
<tr>
<td>SW</td>
<td>Instrument Switch</td>
</tr>
<tr>
<td>R1</td>
<td>Relay (Coil)</td>
</tr>
<tr>
<td>R1/1, R1/2</td>
<td>Relay Contactor</td>
</tr>
<tr>
<td>C</td>
<td>Temperature Controller</td>
</tr>
<tr>
<td>OT</td>
<td>Over-Temperature Controller</td>
</tr>
<tr>
<td>TC</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>SSR</td>
<td>Solid State Relay</td>
</tr>
<tr>
<td>EL</td>
<td>Element(s)</td>
</tr>
<tr>
<td>*</td>
<td>If Fitted</td>
</tr>
<tr>
<td>L</td>
<td>Live</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
</tr>
<tr>
<td>PE (GR/Y)</td>
<td>Earth (Green+Yellow)</td>
</tr>
</tbody>
</table>

Diagram showing wiring connections with key components identified.
9.2 WS-10-01 - Isolating for 208 V version only

The transformer changes the supply voltage of the control circuit into the desired operating range for the controller and other components. The supply voltage as shown is taken from a single phase supply or from the phase-to-phase voltage of a 3-phase supply. The instrument circuit is modified as follows.

![Wiring Diagram]

Key

<table>
<thead>
<tr>
<th>F1, F2</th>
<th>Fuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIL</td>
<td>Filter (if fitted)</td>
</tr>
<tr>
<td>TX</td>
<td>Transformer</td>
</tr>
<tr>
<td>SW</td>
<td>Instrument Switch</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
</tr>
<tr>
<td>L1</td>
<td>Live</td>
</tr>
<tr>
<td>PE</td>
<td>Earth</td>
</tr>
</tbody>
</table>
10.0 Fuses and Power Settings

10.1 Fuses

F1-F2: Refer to the circuit diagrams.

<table>
<thead>
<tr>
<th>F1</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Supply Fuses</td>
<td>Fitted if supply cable fitted. Fitted on board to some types of EMC filter.</td>
<td>GEC Safeclip of the type shown (glass type F up to 16 A) 38 mm x 10 mm type F fitted on EMC filter circuit board(s)</td>
</tr>
<tr>
<td>F2</td>
<td>Auxiliary Circuit Fuses</td>
<td>2 Amps glass type F</td>
</tr>
<tr>
<td></td>
<td>Fitted on board to some types of EMC filter.</td>
<td>On board: 20 mm x 5 mm</td>
</tr>
<tr>
<td></td>
<td>May be omitted up to 25 Amp/phase supply rating.</td>
<td>Other: 32 mm x 6 mm</td>
</tr>
<tr>
<td>Customer Fuses</td>
<td>Required if no supply cable fitted. Required if cable fitted.</td>
<td>See rating label for current; See table below for fuse rating.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Phases</th>
<th>Volts</th>
<th>Supply Fuse Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/500</td>
<td>3-phase + Neutral</td>
<td>400 V</td>
<td>25 A (per phase)</td>
</tr>
</tbody>
</table>

10.2 Power Settings

The power limit settings (parameter OP.Hi) for this model are voltage dependant. The figures represent the maximum percentage of time that controlled power is supplied to the elements. Do not attempt to “improve performance” by setting a value higher than the recommended values. To adjust the parameter refer to the "Changing the Maximum Output Power" of the control section of the manual.

<table>
<thead>
<tr>
<th>Volts</th>
<th>208 V</th>
<th>220 V</th>
<th>230 V</th>
<th>240 V</th>
<th>380 V</th>
<th>400 V</th>
<th>415 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

Please refer to the rating label for product specific information.
11.0 Specifications

Carbolite Gero reserves the right to change the specification without notice.

<table>
<thead>
<tr>
<th>Model</th>
<th>Max Temp (°C)</th>
<th>Max Power (kW)</th>
<th>Chamber Size (mm)</th>
<th>Approx Capacity (l)</th>
<th>Net Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>W</td>
<td>D</td>
</tr>
<tr>
<td>HTMA 4/220</td>
<td>400</td>
<td>3</td>
<td>610</td>
<td>610</td>
<td>610</td>
</tr>
</tbody>
</table>

11.1 Environment

The models listed in this manual contains electrical parts and should be stored and used in indoor conditions as follows:

Temperature: 5 °C - 40 °C

Relative humidity: Maximum 80 % up to 31 °C decreasing linearly to 50 % at 40 °C
Service Record

<table>
<thead>
<tr>
<th>Engineer Name</th>
<th>Date</th>
<th>Record of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The products covered in this manual are only a small part of the wide range of ovens, chamber furnaces and tube furnaces manufactured by Carbolite Gero for laboratory and industrial use. For further details of our standard or custom built products please contact us at the address below, or ask your nearest stockist.

For preventive maintenance, repair and calibration of all furnace and oven products, please contact:

Carbolite Gero Service

Telephone: + 44 (0) 1433 624242
Fax: +44 (0) 1433 624243
Email: ServiceUK@carbolite-gero.com

Carbolite Gero Ltd,
Parsons Lane, Hope, Hope Valley, S33 6RB, England.
Telephone: + 44 (0) 1433 620011
Fax: + 44 (0) 1433 621198
Email: Info@carbolite-gero.com
www.carbolite-gero.com

Copyright © 2018 Carbolite Gero Limited