Installation, Operation and Maintenance Instructions

1200°C Large Tube Furnace - KZS Model: 600mm
3508 Controller + 2132 End Zone Controllers

KZS 12/600 + 3508 Controller + 2132 End Zone Controllers
Contents

This manual is for guidance on the use of the Carbolite Gero product specified on the front cover. This manual should be read thoroughly before unpacking and using the furnace or oven. The model details and serial number are shown on the back of this manual. Use the product for the purpose for which it is intended.

1.0 Symbols and Warnings .. 6
 1.1 Switches and Lights ... 6
 1.2 General Warnings .. 6

2.0 Installation .. 8
 2.1 Unpacking and Handling ... 8
 2.2 Siting and Setting Up .. 8
 2.3 Electrical Connections .. 11

3.0 3508 Controller .. 14
 3.1 PID control .. 14
 3.2 3508P1 .. 14
 3.3 3508P10 ... 14
 3.4 3508P25 .. 14
 3.5 Basic Operation .. 15
 3.5.1 Controller Layout .. 16
 3.5.2 Keys .. 16
 3.6 Quick Start Guide .. 16
 3.6.1 Operation as a simple controller .. 16
 3.6.2 Changing the Setpoint .. 16
 3.6.3 Resetting the programmer .. 17
 3.6.4 Understanding User Levels .. 17
 3.7 Setting Up Controller ... 18
 3.7.1 Maximum output power setting .. 18
 3.7.2 Customer ID. ... 18
 3.7.3 Units .. 19
 3.7.4 Language .. 19
 3.8 Programming .. 19
 3.8.1 Programming Notes ... 19
 3.8.2 Holdback .. 20
 3.8.3 Wait Segments .. 20
 3.8.4 Program Cycling ... 21
 3.8.5 Creating a Program .. 21
 3.8.6 Running a Program ... 22
 3.8.7 To pause (hold) a program .. 23
 3.8.8 To stop and reset a program .. 23
3.8.10 Program Status .. 23
3.8.11 Program Hold with Holdback 24
3.8.12 Power Failure Recovery ... 24
3.8.13 Alarms .. 25
3.8.14 Program Example 1 ... 25
3.8.15 Program Example 2 ... 27

3.9 Controller Options .. 29
3.9.1 Digital Communications - RS232 30
3.9.2 Digital Communications - RS485 30
3.9.3 Comms Address ... 30
3.9.4 Alarm Option ... 30
3.9.5 Remote Input and Output (Analogue Communications) 31
3.9.6 Program segment output .. 31

3.10 Temperature Controller Replacement 32

3.11 Controller Navigation Diagrams 32
3.11.1 Operator Level 1 - No Program Running 33
3.11.2 Operator Level 1 - Program Running 34
3.11.3 Supervisor Level 2 .. 35

4.0 3508 Dual Loop Cascade Control (if fitted) 36
4.1 Principle of Cascade Control 36
4.2 Operation of Cascade Control 36
4.3 Bypassing Cascade Control 40
4.4 3508P1 Element Loop (Loop 2) 40
4.5 Caution .. 40
4.6 Over-Temperature Control ... 40

5.0 2132 Controller ... 41
5.1 Description .. 41
5.2 2132 Controller Operation .. 41
5.2.1 Controls .. 41
5.2.2 2132 Controller Operation 42
5.2.3 Basic Operation ... 42
5.2.4 Altering the Setpoint .. 42
5.2.5 Stopping and Starting Control 43
5.2.6 Altering the Ramp Rate ... 43
5.3 Operating with the Timer ... 44
5.3.1 Setting the Timer Mode .. 46
5.3.2 Setting the Time Period ... 46
5.3.3 Running with the Timer ... 46
5.3.4 Stopping the Timer .. 47
5.3.5 End of Time Period ... 48
5.3.6 Cancelling the Alarm ... 48
5.3.7 Program Example .. 48
5.4 Altering Power Limit .. 48
5.5 Audible Alarm .. 51
5.6 Temperature Controller Replacement .. 51
5.7 Navigation Diagram .. 52

6.0 2132 Over-Temperature Controller Description (if fitted) 54
6.1 Description .. 54
6.2 Operation .. 54
 6.2.1 Controls .. 54
 6.2.2 Operation .. 55
 6.2.3 Over-Temperature Operation .. 55
 6.2.4 Over-Temperature Alarm .. 55
 6.2.5 Resetting the Over-Temperature Alarm 55
 6.2.6 Sensor Break ... 55
6.3 Audible Alarm .. 56
6.4 Navigation Diagram .. 56

7.0 Operation .. 57
7.1 Operating Cycle .. 57
7.2 Control Method ... 57
7.3 3-Zone Control Methods ... 57
 A. Back-to-Back Thermocouples ... 58
 B. Retransmission of Setpoint ... 58
 C. Independent Control ... 59
7.4 General Operating Advice ... 59
7.5 Operator Safety .. 60
7.6 Tube Life ... 60
7.7 Pressure .. 60
7.8 Power Adjustment .. 61
7.9 Running at Low Temperatures ... 61

8.0 Maintenance ... 62
8.1 General Maintenance ... 62
8.2 Maintenance Schedule ... 62
 8.2.1 Cleaning .. 64
 8.2.2 Safety Switch .. 64
8.3 Calibration ... 64
8.4 After-Sales Service .. 65
8.5 Recommended Spare Parts and Spare Parts Kit 65

9.0 Repairs and Replacements .. 66
9.1 Safety Warning - Disconnection from Power Supply 66
9.2 Safety Warning - Refractory Fibre Insulation 66
9.3 Temperature Controller Replacement 66
9.4 Solid-state Relay Replacement 67
9.5 Thermocouple Replacement ... 67
9.6 Element Replacement .. 67
9.7 Fuse Replacement .. 68

10.0 Fault Analysis .. 69
A. Furnace Does Not Heat Up ... 69
B. Product Overheats ... 70

11.0 Wiring Diagrams ... 71

12.0 Fuses and Power Settings .. 72
12.1 Fuses ... 72

13.0 Specifications .. 73
13.1 Environment .. 73
Furnace drying out process ... 73
1.0 Symbols and Warnings

1.1 Switches and Lights

Instrument switch: when the instrument switch is operated the temperature control circuit is energised.

Heat light: the adjacent light glows or flashes to indicate that power is being supplied to the elements.

Heat switch: the switch disconnects power to the heating elements; unless this switch is OFF there is a danger of electric shock when inserting objects into the product.

1.2 General Warnings

DANGER – Electric shock. Read any warning printed next to this symbol.
WARNING: Risk of fatal injury.

DANGER – Hot surface. Read any warning printed next to this symbol.
WARNING: All surfaces of a product may be hot.

DANGER – Read any warning printed next to this symbol.
Caution – Double Pole/Neutral Fusing
2.0 Installation

2.1 Unpacking and Handling

When unpacking or moving the product always lift it by its base or by both ends of the main body. Never lift it by its work tube or the surrounding insulation. Use two or more people to carry the product and control box. Remove any packing material from inside the product before use.

If an optional or special stand is separately supplied, assemble the product on to it. Some models may be supplied for customer mounting and may require customer preparation of mounting components before installation.

NOTE: This product contains Refractory Ceramic Fibre (also known as Alumino Silicate Wool - ASW). For precautions and advice on handling this material see section 9.2.

2.2 Siting and Setting Up

Place the product on a level surface in a well ventilated area.

Site away from other sources of heat and on a non-flammable surface that is resistant to accidental spillage or hot materials.

The surface on which the equipment is mounted should be stable and not subject to movement or vibrations.

The height of the mounting surface is important to avoid operator strain when loading and unloading samples.

Unless otherwise stated elsewhere in this manual, ensure that there is at least 150 mm of free space around the back and sides of the product. Clear space is required above the product to dissipate heat.

Work tubes:

It is recommended that the work tube has either insulation plugs or radiation shields fitted to minimise heat loss from both ends of the work tube. If the work tube has open ends, a significant amount of energy could be radiated from the ends of the work tube. Adjacent surfaces should always be made from a non-flammable material.

Ensure that the ends of the work tube are positioned at least 500 mm away from any adjacent surface so that any energy radiated cannot heat an adjacent surface to a dangerous temperature.
Ensure that the product is placed in such a way that it can be quickly switched off or disconnected from the electrical supply.

If the product is supplied with a work tube or any accessories fit these into position.

For optimum temperature uniformity, insulating plugs should be placed in the tube ends as shown in fig.1. With a long work tube, the stem of the plug assembly should line up with the end of the tube as in fig.2. Alignment of radiation shields is similar to that of plugs.

If stainless steel seals with gas inlets are supplied, they are to be fitted as shown in fig.3; the stem of any insulating plug should touch the seal.

For vertical models with stainless steel seals, a hook and eye arrangement holds the upper insulating plug assembly.

Horizontal models: if heavy fittings are to be clamped to the end of an extended work tube they can increase the bending stress at the centre of the tube. Support such fittings in such a way that expansion of the tube is allowed.

If a metal work tube is being used in the product, ensure that it is earthed for operator safety.
2.0 Installation

Fig 1 - Insulating Plug (standard length tube)

Fig 2 - Insulating Plug (long work tube)

<table>
<thead>
<tr>
<th>Key</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tube</td>
</tr>
<tr>
<td>B</td>
<td>Insulating Plug</td>
</tr>
<tr>
<td>C</td>
<td>Stem</td>
</tr>
</tbody>
</table>
2.0 Installation

Fig 3 ‘Twin Clamp’ End Seal

For assembly details refer to the separate work tube end seal manual.

Under no circumstances should any objects be placed on top of the product. Always ensure that any vents on the top of the product are clear of any obstruction. Always ensure all cooling vents and cooling fans (if fitted) are clear of any obstruction.

2.3 Electrical Connections

Connection by a qualified electrician is recommended.
The product covered by this manual normally requires a single phase A.C. supply, which may be Live to Neutral non-reversible, Live to Neutral reversible or Live to Live. Some models may be ordered for 3-phase use, which may be star or delta.

Check the product rating label before connection. The supply voltage should agree with the voltage on the label and the supply capacity should be sufficient for the current on the label.

The supply should be fused at the next size equal to, or higher than the current on the label. A table of the most common fuse ratings is also given towards the back of this manual. When the mains cable is factory fitted, internal fuses are also fitted. It is essential that the operator ensures that the product is correctly fused.

Products with a factory fitted supply cable are designed to be wired directly to an isolator or fitted with a line plug.

Products without a factory fitted supply cable require a permanent connection to a fused and isolated supply. The product's electrical access panel should be temporarily removed, and connections made to the internal terminals.

If the product is to be connected by line plug. The plug should be within reach of the operator and should be easy to remove.

When connecting the product to an isolating switch ensure that both conductors (single phase) or on all live conductors (three phase), and should be within reach of the operator.

The supply MUST incorporate an earth (ground).

Electrical Connection Details:

<table>
<thead>
<tr>
<th>Supply</th>
<th>Terminal Label</th>
<th>Cable Colour</th>
<th>Supply Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-phase</td>
<td>L</td>
<td>Brown</td>
<td>Live - Neutral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reversible or Live-Live</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Blue</td>
<td>to live</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to either power conductor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(For USA 200-240V, connect L1)</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>Green/Yellow</td>
<td>to neutral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the other power conductor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(For USA 200-240V, connect L2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to earth (ground)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to earth (ground)</td>
</tr>
</tbody>
</table>
2.0 Installation

<table>
<thead>
<tr>
<th>3-phase</th>
<th>L1</th>
<th>Black</th>
<th>to phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>Black</td>
<td></td>
<td>to phase 2</td>
</tr>
<tr>
<td>L3</td>
<td>Black</td>
<td></td>
<td>to phase 3</td>
</tr>
<tr>
<td>N</td>
<td>Light Blue</td>
<td></td>
<td>to neutral (except delta)</td>
</tr>
<tr>
<td>PE</td>
<td>Green/Yellow</td>
<td></td>
<td>to earth (ground)</td>
</tr>
</tbody>
</table>

WARNING: DO NOT connect a product ordered for three phase use to a single phase supply or to the wrong type of three phase supply.
3.0 3508 Controller

3.1 PID control

This controller uses PID (Proportional Integral Derivative) temperature control. This type of control uses a complex mathematical control system to adjust the heating power and achieve the desired temperature.

3.2 3508P1

The 3508P1 is a digital temperature controller which uses PID algorithm to give excellent temperature control when properly set. This controller can store and operate a single program of up to 20 segments. The 3508P1 can also be used as a simple temperature controller.

3.3 3508P10

The 3508P10 is a digital controller which uses PID algorithms to give excellent temperature control when properly set. This controller can store 10 programs of up to 50 segments each. Programs can be operated individually or linked by a Call parameter as sub-programs or to form single long programs. The 3508P10 can also be used as a simple temperature controller.

3.4 3508P25

The 3508P25 is a digital temperature controller which uses PID algorithms to give excellent temperature control when properly set. This controller has a maximum of 500 segments or 25 programs; each program has a maximum of 50 segments. For example 3508P25 could store 10 programs with 50 segments or 25 programs with 20 segments. Programs can be operated individually or linked by a Call parameter as sub-programs or to form single long programs. The 3508P25 can also be used as a simple temperature controller.
3.5 Basic Operation

Key

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alarm Indicator</td>
</tr>
<tr>
<td>B</td>
<td>Power Output Indicator</td>
</tr>
<tr>
<td>C</td>
<td>Not Used</td>
</tr>
<tr>
<td>D</td>
<td>Runs, Holds, Resets the current program</td>
</tr>
<tr>
<td>E</td>
<td>Page</td>
</tr>
<tr>
<td>F</td>
<td>Scroll</td>
</tr>
<tr>
<td>G</td>
<td>Down</td>
</tr>
<tr>
<td>H</td>
<td>Up</td>
</tr>
<tr>
<td>I</td>
<td>Power Output Percentage</td>
</tr>
<tr>
<td>J</td>
<td>Program Setpoint Temperature (PSP) when a program is running</td>
</tr>
<tr>
<td>K</td>
<td>Setpoint Temperature (SP) when basic controlling</td>
</tr>
<tr>
<td>L</td>
<td>Measurement Temperature</td>
</tr>
</tbody>
</table>
3.0 3508 Controller

3.5.1 Controller Layout

3.5.2 Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/ Man</td>
<td>Disabled</td>
</tr>
<tr>
<td>RUN/ HOLD</td>
<td>Runs, Holds or Resets the current program. Hold down for 3 seconds to Reset.</td>
</tr>
<tr>
<td>Page Key</td>
<td>Scrolls through the page headings. Hold down for 3 seconds to access further levels, pass codes are required.</td>
</tr>
<tr>
<td>Scroll Key</td>
<td>Scrolls through parameters listed on pages.</td>
</tr>
<tr>
<td>Arrow Keys</td>
<td>Adjust parameter values.</td>
</tr>
<tr>
<td>Page and Scroll together</td>
<td>Press together to return to the home display or to acknowledge an alarm.</td>
</tr>
<tr>
<td>Page and Up together</td>
<td>Press together quickly to scroll back up the page headings.</td>
</tr>
<tr>
<td>Scroll and Up together</td>
<td>Press together quickly to scroll back up a parameter list.</td>
</tr>
</tbody>
</table>

Pressing any other combination of keys together has no effect.

Note: If no keys are pressed for 1 minute, the display returns to Home.

3.6 Quick Start Guide

3.6.1 Operation as a simple controller

When switched on the controller goes through a short test routine and then shows the measured temperature. Below it, the setpoint temperature (SP) and percentage of power output.

The controller will immediately attempt to reach the set temperature and maintain it. This will cause the product to heat as quickly as possible which may not be appropriate where the product contains sensitive ceramic components. For products with ceramic components, e.g. a tube furnaces fitted with a long ceramic work tube, use the ramp rate feature set with a low heating rate such as 5°C per minute (300°C per hour), to prevent damage.

3.6.2 Changing the Setpoint

Press up ▲ or down ▼ to select the required SP. If the SP is higher than the measured temperature, the OP1 indicator will illuminate at the top of the display, indicating that the product is heating.

The controller will immediately attempt to reach the set temperature and maintain it.
This will cause the product to heat as quickly as possible which may not be appropriate where the product contains sensitive ceramic components. For products with ceramic components, e.g. a tube furnaces fitted with a long ceramic work tube, use the ramp rate feature set with a low heating rate such as 5°C per minute (300°C per hour), to prevent damage.

3.6.3 Resetting the programmer

To reset the programmer to simple controller mode, press RUN/HOLD for 2 seconds.

Operating the current program

• To avoid unwanted heating at the end of a program, set the SP temperature to zero before operating a program.
• Ensure the programmer is reset to simple controller mode before starting a program by pressing RUN/HOLD for 2 seconds.
• To start the program, press RUN/HOLD twice, RUN will light up on the display.

The displayed Program Setpoint (PSP) follows ramps, dwells and steps as the program runs. The SP temperature of the controller does not apply when a program is operating.
• To pause the program, press RUN/HOLD.
• To stop the program and return to simple controlling (reset), press RUN/HOLD for 2 seconds.

When the program ends, the programmer will either:
• Automatically reset to operation as a simple controller.
• Dwell at the last temperature of the program (with the RUN indicator flashing), until the operator presses RUN/HOLD for 2 seconds to manually reset, or presses RUN/HOLD once to restart the program.
• Turn power to the elements down to zero.

3.6.4 Understanding User Levels

There are two levels in the controller; Level 1 (Operator) and Level 2 (Supervisor). Level 1 (Operator) is for the day-to-day operation of the controller is not protected by a security code. There are 3 pages at this level. Page 1, Customer Identity, can only be altered in level 2. Page 2 shows the current program status. Page 3 is for writing and viewing programs.

Level 2 (Supervisor) requires a security code to enter, but once enable, provides access to additional parameters. A further 4 pages are accessible in this level as follows; Home, Customer identity, Control Output Hi percentage, Units.
To Enter Level 2:

1. Press and hold page 📖 for 3 seconds. The display will show “Access Goto Level 1”

2. Press up ▲ to select level 2. After a short pause the display will show “Access Pass code”.

3. Press up ▲ or down ▼ to enter the pass code. Pass is momentarily displayed. After a short pause the display will return to home, the controller is now in level 2.

When Level 2 operations have been completed the supervisor must return to Level 1 manually. It is not necessary to enter a code when going from a higher level to a lower level.

To Return to Level 1:

1. Press and hold page 📖 for 3 seconds. The display will show “Access Goto Level 2.

2. Press down ▼ to go to level 1. After a short pause the display will revert to home, the controller is now in level 1.

3.7 Setting Up Controller

Before using the controller (or during its lifetime) certain parameters may have to be set, depending on specific requirements. To do this the controller must be set to Supervisor Level 2, see "Controller Navigation Diagrams".

3.7.1 Maximum output power setting

Press page 📖 until "Control Output Hi" is displayed. Press up ▲ or down ▼ to adjust the value.

Depending on the product model, the maximum power output setting may be accessible or locked.

For silicon carbide heated products the parameter is accessible to allow compensation for element ageing.

In many models the maximum power output setting depends on the electrical supply voltage, refer to section 12.0.

3.7.2 Customer ID.

A product identity number can be entered if required. This may be used to identify one of many units, for production or quality control systems.

Press page 📖 until "Customer Identity" is displayed. Press up ▲ or down ▼ to select a number.
3.7.3 Units

Press page \(\text{Page}\) until "Units" is displayed. Press up \(\uparrow\) or down \(\downarrow\) to select:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
</tbody>
</table>

3.7.4 Language

The text on the 3508 Controller can be shown in different languages, this can only be set at the factory and therefore must be specified at the time of placing an order.

3.8 Programming

3.8.1 Programming Notes

Programs can be created in Level 1 or Level 2 of the 3508 Controller.

For the P10 and P25, new programs can be created while the current program is operating.

To avoid unwanted heating at the end of a program, set the controller setpoint temperature to zero before operating a program.

All new unused programs show only 1 segment of type 'End'.

The minimum number of segments for a program is 2. The second being an 'End' type.

Ramp-to-setpoint control. To achieve this, create a two segment program. Set the first segment type as 'Rate' or 'Time'. Set the second segment type 'End' type 'Dwell'.

For the P10 and P25, programs can be linked together using a 'Call' segment. However, a lower number program can not be called and a program can not be ended with a call segment.

A program can be ended in four ways:

1. With 'End' segment set to S.OP the power to the elements is turned down to 0%, no matter what the 'Setpoint' temperature is.
2. With 'End' segment set to 'Reset' and the 'Setpoint' temperature turned down to zero, power to the elements will be 0%. To do this set the 'Setpoint' temperature to the minimum possible. For type B thermocouples this will be below zero.
3. With the 'End' segment set to 'Reset'. The controller will try to reach and maintain the 'Setpoint' temperature in place before the program started.
4. With the 'End' segment set to 'Dwell'. The controller will dwell at the 'PSP' of the last segment ('RUN' indicator flashes), until it is reset.

To reduce the number of segments in a program, change the last required segment to an 'End' type.

You will be asked to press \(\text{Page}\) to cancel or \(\text{Page}\) for OK.

To cancel all segments in a program, change the first segment to an 'End' type.
To alter parameters or segments of an operating program, this program must be held or reset. Press RUN/ HOLD to pause the program, or press RUN/ HOLD for 2 seconds to reset.

3.8.2 Holdback

Holdback can be used to prevent the program from operating ahead of the actual heating or cooling.

The holdback value is the amount, in degrees, by which the program setpoint can run ahead of the measured temperature before holdback operates. The value applies to a whole program.

To set the value press page twice, press scroll until 'Holdback Value' appears and press up ▲ or down ▼ to set.

Holdback can be used in 'Rate', 'Time' and 'Step' segments.

- For 'Rate' and 'Time' segments holdback will operate during the segment.
- For a 'Step' segment holdback delays continuation to the next segment until the step target is reached.

The 'Holdback Type' can be set as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Applies to heating only</td>
</tr>
<tr>
<td>High</td>
<td>Applies to cooling only</td>
</tr>
<tr>
<td>Band</td>
<td>Applies to both heating and cooling</td>
</tr>
<tr>
<td>Off</td>
<td>Holdback is switched off</td>
</tr>
</tbody>
</table>

To set the holdback type, press page twice, then press scroll until the display shows 'Holdback Type' for each segment and press up ▲ or down ▼ to set.

The default setting for holdback is 'OFF'.

3.8.3 Wait Segments

Wait prevents the program proceeding to the next segment, in a similar way to holdback, until the selected ‘Wait-For’ parameter has been met. There are 5 ‘Wait For’ parameters. The first 4 only work if there are configured inputs to the controller.

1. PrgIn1 Wait until Input 1 is true
2. PrgIn2 Wait until Input 2 is true
3. PrgIn 1&2 Wait until Inputs 1 AND 2 are true
4. PrgIn 1or2 Wait until Inputs 1 OR 2 is true
5. PVWaitIP Wait until the measured temperature reaches a threshold value before continuing. It can operate in one of 4 ways:
 1. 'Abs Hi' Wait until the measured temperature is greater than or equal to a value 'WaitVal' set for that segment.
 2. 'Abs Lo' Wait until the measured temperature is less than or equal to a value 'WaitVal' set for that segment.
3. 'Dev Hi’ Wait until the measured temperature exceeds a fixed* threshold by an amount 'WaitVal’ set for that segment.
4. 'Dev Lo’ Wait until the measured temperature drops below a fixed* threshold by an amount ‘WaitVal’ set for that segment.

* The fixed threshold used by deviation parameters is set in the configuration level of the programmer and if required should be requested when purchasing a product from Carbolite Gero.

3.8.4 Program Cycling
The 'Cycles' parameter sets the number of times the program will operate.
The default setting is 1 cycle.

To change the number of cycles, press page twice, then press scroll until the display shows 'Prog Cycles', then press up to set a finite number of cycles up to 999. Or press down to set cycling to continuous.

3.8.5 Creating a Program
From the home display, press page three times to get to the programming page, the display will show “ProgEdit 1”.

Program number
On P10 or P25 models press up or down to select a new program number. The display will show that new programs have only one segment.

Holdback Value
Press scroll until the display shows 'Holdback Value". If required: Press up or down to set a value. This value will be used in any segment where a 'Holdback Type' is set.

Ramp Units
These apply to Rate segments only. Press scroll until the display shows 'Ramp Units'. Press up or down to select the ramp units of degrees per Hour, Min or Sec.

Number of program cycles
Press scroll until the display shows 'Cycles'. Press up or down to select more than one cycle.

Now create all the segments for your program, finishing with an 'End' segment. When parameters for each segment have been entered the display goes to the next segment number.

Segment Type
Press scroll until the display shows 'Segment Type'. Press up or down to select 'Rate', 'Time', 'Dwell', 'Step', 'Wait', 'GoBack', 'Call' or 'End'.
Holdback Type

Press scroll ⬆ until the display shows 'Holdback Type'. If required, press up ▲ or down ▼ to select 'Off', 'Low', 'High' or 'Band'.

Target Setpoint (Visible only for Rate, Time and Step segments)

Press scroll ⬆ until the display shows 'Target SP'. Press up ▲ or down ▼ to set a value.

Ramp Rate (Visible only for Rate segments)

Press scroll ⬆ until the display shows 'Ramp Rate'. Press up ▲ or down ▼ to set the number of degrees per 'Ramp Unit' as set above.

Duration (Visible only for Time and Dwell segments)

Press scroll ⬆ until the display shows 'Duration'. Press up ▲ or down ▼ to set a value.

Wait For (Visible only for Wait segments)

Press scroll ⬆ until the display shows 'Wait For'. Press up ▲ or down ▼ to select:
PrgIn1, PrgIn2, PrgIn1In2, PrgIn1orIn2, PVWaitIP.

GoBack to segment number (visible only for GoBack segments)

Press scroll ⬆ until the display shows 'GoBack Seg'. Press down ▼ to select a segment number to go back to.

GoBack Cycles (visible only for GoBack segments)

Press scroll ⬆ until the display shows 'GoBack Cycles'. Press up ▲ or down ▼ to set a value.

Call Cycles (Visible only for call segments)

Press scroll ⬆ until the display shows 'Call Cycles'. Press up ▲ or down ▼ to set a value.

End Type (Visible only for End segments)

Press scroll ⬆ until the display shows 'End Type'. Press up ▲ or down ▼ to select: 'Reset', 'Dwell' or 'SafeOp'.

3.8.6 Running a Program

The current program can be started from the home display by pressing RUN/HOLD or by pressing page ⬇ once, then scroll ⬆ once (twice for P10 and P25), then press up ▲ or down ▼ to change the status to 'Run'.
3.8.7 To pause (hold) a program
Press RUN/HOLD
or
Press page \[\text{up} \] until 'Program Status Reset' appears
Press scroll \[\text{up} \] until the cursor moves to 'Reset'
Press up \[\text{up} \] or down \[\text{down} \] to select 'Hold'
RUN/HLD will be displayed

3.8.8 To stop and reset a program
Press and hold RUN/HOLD
or
Press page \[\text{up} \] until 'Program Status Reset' appears
Press scroll \[\text{up} \] until the cursor moves to 'Reset'
Press up \[\text{up} \] or down \[\text{down} \] to select 'Reset'

3.8.9 To run a different program (P10 and P25)
To select a program
Press page \[\text{up} \] until 'Program Status Reset' appears
Press scroll \[\text{up} \] then up \[\text{up} \] or down \[\text{down} \] to select a program number

To operate the program
Press RUN/HOLD
or
Press scroll \[\text{up} \] until the cursor moves to 'Reset'
Press up \[\text{up} \] or down \[\text{down} \] to select 'Run'
Run will be displayed

3.8.10 Program Status
While a program is operating the home display shows 3 values:
- Top: Measured temperature
- Centre: Program Setpoint (PSP)
- Bottom: Power output percentage

To see more detail:
Press page \[\text{page} \] once to go to the program status page. The top and centre values from the home page remain on the display. The lower half of the screen now shows:
Current program number (P10 and P25 only)
Current segment number
Time remaining for that segment

Further presses of the scroll \[\text{key} \] while a program is operating will reveal additional information:

- Status. This can be changed to 'Hold', 'Reset' or 'Run' by pressing up \[\text{▲} \] or down \[\text{▼} \]
- Program Setpoint (PSP)
- Current Segment Type. 'Step' and 'Call' segments are instant, so are only flashed on the screen, unless holdback is operating on that segment.
- Target Setpoint
- Segment Rate For 'Rate', 'Time' and 'Step' segments only
- Cycles left
- Program Time Left

3.8.11 Program Hold with Holdback
If a holdback value has been set and the program goes into a hold state, the green HLD indicator will flash until the measured temperature catches up.

While in this condition, the program itself is put into hold by pressing the RUN/HLD button, the 'HLD' indicator will stop flashing and remain on with the 'RUN' indicator. When the program is started again by pressing the RUN/HLD button, the 'HLD' indicator will flash again if the measured temperature has not caught up with the program.

Programming note: For P10 and P25 models, other programs can be created or changed whilst the current program is operating.

3.8.12 Power Failure Recovery
If there is a power interruption to the controller during a program, when power is restored the controller pauses the program, then ramps the temperature back up to the current program setpoint (PSP) before continuing the program.

- Power failure during ramp segments: The ramp rate will be that of the current ramp segment.
- Power failure during dwell segments: The ramp rate will be that of the previous ramp segment. If a previous ramp segment does not exist, then the dwell will continue at the current measured temperature.
- Power failure during time-to-target segments: The ramp rate will be that of the current segment. The ramp rate is maintained, but the time remaining is recalculated.

If there is a power interruption while controlling to setpoint, when power is restored the controller automatically calls for maximum power.
3.8.13 Alarms

Alarms are used to alert the operator when a pre-set level has been exceeded or a function error has occurred such as a sensor break. They are indicated by a flashing red ALM (Alarm) indicator. The alarm may also switch an output – usually a relay to allow external devices to operate when an alarm occurs. Alarms only operate if they have been configured and are dependent on customer requirements.

How to acknowledge an alarm will depend on the type of latching which has been configured. A non-latched alarm will reset itself when the alarm condition is removed. A latched alarm requires acknowledgement with the 'ACK' function before it is reset.

If an alarm has been activated, the red 'ALM' indicator will flash and the text will indicate the type of alarm.

To acknowledge an alarm and cancel the 'ALM' indicator, press \[\text{\textbullet}\] and \[\text{Page}\] together.

3.8.14 Program Example 1

The following sequence of entries creates and runs the program shown graphically below.

1. Turn the controller SP down to '0' by pressing down \[\text{\textbullet}\].
2. Press page \[\text{\textbullet}\] until 'Prog Segments Used' is displayed. On P10 or P25 models press up \[\text{\textbullet}\] or down \[\text{\textbullet}\] to select a new program number, (a program with only 1 segment).
3. Press scroll \[\text{\textbullet}\] until 'Holdback Value' is displayed. Default ‘0’ degrees.
4. Press scroll \[\text{\textbullet}\] until 'Ramp Units' is displayed. Press up \[\text{\textbullet}\] or down \[\text{\textbullet}\] to set to ‘Min’
5. Press scroll \[\text{\textbullet}\] until 'Cycles' is displayed. Default ‘1’
6. Press scroll \[\text{\textbullet}\] until 'Segment 1' is displayed
7. Press scroll \[\text{\textbullet}\] until 'Segment Type' is displayed. Press up \[\text{\textbullet}\] or down \[\text{\textbullet}\] to select 'Rate''
8. Press scroll \[\text{\textbullet}\] until 'Holdback Type' is displayed. Default ‘Off’
9. Press scroll \[\text{\textbullet}\] until 'Target SP' is displayed. Press up \[\text{\textbullet}\] or down \[\text{\textbullet}\] to set to ‘400’ degrees.
10. Press scroll \[\text{\textbullet}\] until 'Ramp Rate' is displayed. Press up \[\text{\textbullet}\] or down \[\text{\textbullet}\] to set to ‘5.0’ degrees per minute.

Repeat steps 6 to 10 for 4 more segments. Set 'Holdback' to the default ‘Off’. Enter the following parameters and values:

Segment Type Dwell Duration '30:00.0’ minutes
Segment Type Step Target SP '600’ degrees
Segment Type Dwell Duration '30:00.0’ minutes
Segment Type Time Target SP '200’ degrees, Duration '2:00:0’ hours

Finish the program with an 'End' segment:
11. Press scroll △ until 'Segment Type' is displayed. Press up ▲ or down ▼ to select 'End'

12. Press scroll △ until 'End Type' is displayed. Press up ▲ or down ▼ to select 'Reset'

13. Press page □ and scroll △ together to return to the home display.
To run the program either press RUN/HOLD or:

14. Press page □ until 'Program Status' is displayed

15. Press scroll △ until the cursor moves to the program status of 'Reset'

16. Press ▲ to select 'Run'.
Time Display Examples

10:05:3 Min/Sec/10th Sec
21:10:05 Hour/Min/Sec
196:10 Hour/Min

Segment

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 'Rate'</td>
<td>Type 'Dwell'</td>
<td>Type 'Step'</td>
<td>Type 'Dwell'</td>
<td>Type 'Time'</td>
<td>Type 'End'</td>
<td></td>
</tr>
<tr>
<td>Target 400°C</td>
<td>Duration 30 min</td>
<td>Target 600°C</td>
<td>Duration 30 min</td>
<td>Target 200°C</td>
<td>End Type 'Reset'</td>
<td></td>
</tr>
<tr>
<td>Rate 5.0°C/Min</td>
<td></td>
<td></td>
<td></td>
<td>Time 120 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.8.15 Program Example 2

The following sequence of entries creates and runs the program shown graphically below.

1. Turn the 'Setpoint' to '0' by pressing down

2. Press page ▲ until 'Prog Segments Used' is displayed. On P10 and P25 models press up ▲ or down ▼ to select a new program number, (a program with only 1 segment).

3. Press scroll ▼ until 'Holdback Value' is displayed. Press up ▲ or down ▼ to set to '5' degrees

4. Press scroll ▼ until 'Ramp Units' is displayed. Press up ▲ or down ▼ to set to 'Min'
5. Press scroll ▼ until 'Cycles' is displayed. Default '1'

6. Press scroll ▼ until 'Segment 1' is displayed

7. Press scroll ▼ until 'Segment Type' is displayed. Press up ▲ or down ▼ to select 'Time'

8. Press scroll ▼ until 'Holdback Type' is displayed. Default 'Off'

9. Press scroll ▼ until 'Target SP' is displayed. Press up ▲ or down ▼ to set to '600' degrees

10. Press scroll ▼ until 'Duration' is displayed. Press up ▲ or down ▼ to set to '30:00.0' minutes

Repeat steps 6 to 10 for 4 more segments. Enter the following parameters and values:

Note: Call segments are not available on single program models.

<table>
<thead>
<tr>
<th>Segment Type Type</th>
<th>Rate</th>
<th>Target SP '400' degrees. Ramp Rate '2.0' degrees per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment Type Step</td>
<td>Step</td>
<td>Target SP '200' degrees</td>
</tr>
<tr>
<td>Segment Type Dwell</td>
<td>Dwell</td>
<td>Holdback 'High'. Duration '30:00.0' minutes</td>
</tr>
<tr>
<td>Segment Type Call</td>
<td>Call</td>
<td>Call Prog 'next number'. Call Cycles '2'</td>
</tr>
</tbody>
</table>

Finish the program with an End segment:

11. Press scroll ▼ until 'Segment Type' is displayed. Press up ▲ or down ▼ to select 'End'

12. Press scroll ▼ until 'End Type' is displayed. Press up ▲ or down ▼ to select 'Dwell'

Repeat the sequence to create a short program '3' as suggested in the diagram.

13. Press page ▼ and scroll ▽ together to return to the home display

To operate the program either press RUN/HOLD or

14. Press page ▼ until 'Program Status' is displayed

15. Press scroll ▼ until the cursor moves to the program status of 'Reset'

16. Press ▲ to select 'Run'
3.9 Controller Options

As options can be ordered in a variety of combinations and for a variety of purposes, exact instructions are not given here. The full Eurotherm manual may be required to determine customer parameter settings. To reveal or hide parameters in the controllers it is necessary to go into configuration mode, a security code is needed. Please consult Carbolite Gero.
3.0 3508 Controller

3.9.1 Digital Communications - RS232

If the RS232 option is supplied, the furnace is fitted with one sub-miniature D-socket connected to the controller comms module. RS232 is suitable for direct connection to a personal computer (PC) using a “straight through” cable as follows (the linked pins at the computer end are recommended but may not be necessary). The cable is usually 9-pin at the furnace end and 9-pin at the computer, but other alternatives are shown in parentheses.

<table>
<thead>
<tr>
<th>Product end of cable female (25-pin) 9-pin</th>
<th>RS232 Cable: product to PC</th>
<th>Computer end of cable 9-pin (25-pin) male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx</td>
<td>(2) 3</td>
<td>3 (2) Tx</td>
</tr>
<tr>
<td>Tx</td>
<td>(3) 2</td>
<td>2 (3) Rx</td>
</tr>
<tr>
<td>Com</td>
<td>(7) 5</td>
<td>5 (7) Com</td>
</tr>
<tr>
<td></td>
<td>7,8 (4,5)</td>
<td>Link together</td>
</tr>
<tr>
<td></td>
<td>1,4,6 (6,8,20)</td>
<td>Link together</td>
</tr>
</tbody>
</table>

3.9.2 Digital Communications - RS485

If an RS485 option is supplied, the furnace is fitted with two D-sockets. Connection between products is by “straight” cable as follows:

<table>
<thead>
<tr>
<th>Product end of cable female (25-pin) 9-pin</th>
<th>RS485 Cable: product to PC</th>
<th>Computer end of cable 9-pin (25-pin) female</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>(2) 3</td>
<td>3 (2) Tx</td>
</tr>
<tr>
<td>+</td>
<td>(3) 2</td>
<td>2 (3) Rx</td>
</tr>
<tr>
<td>Com</td>
<td>(7) 5</td>
<td>5 (7) Com</td>
</tr>
</tbody>
</table>

3.9.3 Comms Address

Typically the comms address is set to 1, but this can be changed. In the case of RS485 and multiple instruments it is necessary to set different addresses. To change the address value, access the level 2 list. In level 2 press the page key until the COMMS parameter is displayed. Press up ▲ down ▼ to select the address value.

3.9.4 Alarm Option

When an alarm board is fitted, which consists of a relay with voltage free contacts, for operator use, the contacts are taken to a panel plug on the control panel, wired as indicated:
The purpose of the 2 amp fuse is to break the circuit to prevent overloading on the circuit due to high voltage.

The instrument configuration and parameters available to the operator depend on the customer requirements.

3.9.5 Remote Input and Output (Analogue Communications)
When analogue communications are fitted, the contacts are taken to insulated terminal sockets on the control panel.

Controller configuration depends on customer requirements.
Remote input (when specified) may be switched on and off using the remote setpoint enable parameter in the controller level 2, if this was made available for a particular application. In level 2 press page \[\text{Page} \] until ‘REM SP Enable’ is displayed, press up ▲ or down▼ to select SP1 (the normal controller setpoint) or SP2 (the remote input setpoint), ‘SPX’ will appear in the top left corner of the display.
Remote output does not require switching on and off.

3.9.6 Program segment output
When the customer requirement is for program segment output, an extra parameter is revealed in the PROG list. For each program segment, after the segment type and settings, the parameter EVENT OUTS appears. This has values on and off. If the value
is set to on, then the relay closes during the segment and a small 1 appears in the top left of the screen.

If more than one program segment output is fitted, then there are extra boxes depending on how many event outputs there are.

3.10 Temperature Controller Replacement

Before handling the controller: wear an anti-static wrist strap or otherwise avoid any possibility of damage to the unit by static electricity. Refer to the detailed instructions supplied with the replacement controller.

Ease apart the two lugs at the side; grip the instrument and withdraw it from its sleeve; push in the replacement.

3.11 Controller Navigation Diagrams

The following diagrams detail how to navigate to the various menu options within the 3508 Controller. At each option, values can be set using the arrow keys.
3.11.1 Operator Level 1 - No Program Running

<table>
<thead>
<tr>
<th>HD</th>
<th>Home Display</th>
<th>!</th>
<th>Controller identity when using more than one controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/O</td>
<td>Read Only</td>
<td></td>
<td>Black = Progress</td>
</tr>
<tr>
<td></td>
<td>Page Key</td>
<td>└──</td>
<td>White = Return</td>
</tr>
<tr>
<td></td>
<td>Scroll Key</td>
<td>*</td>
<td>Visible Parameters depend on the Segment Type</td>
</tr>
</tbody>
</table>
3.11.2 Operator Level 1 - Program Running

<table>
<thead>
<tr>
<th>HD</th>
<th>Home Display</th>
<th>!</th>
<th>Controller identity when using more than one controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/O</td>
<td>Read Only</td>
<td></td>
<td>Black = Progress</td>
</tr>
<tr>
<td></td>
<td>Page Key</td>
<td>←</td>
<td>White = Return</td>
</tr>
<tr>
<td></td>
<td>Scroll Key</td>
<td>*</td>
<td>See previous diagram: Operator Level 1 - No Program Running</td>
</tr>
</tbody>
</table>
3.11.3 Supervisor Level 2

A

To enter Level 2

Scroll Key

B

Level 2

Locked before Pass Code entered

L1

Level 1 Home Display

Unlocked

L2

Level 2 Home Display

Black = Progress

Page Key

See previous diagram:

Operator Level 1 - No Program Running

Hold Page Key for 3 seconds

If configured

Arrow Key
4.0 3508 Dual Loop Cascade Control (if fitted)

4.1 Principle of Cascade Control

When cascade control is fitted, the Load Loop 3508 senses the temperature of the workload, and the Element Loop 3508 senses the element temperature. Depending on the oven or furnace model, the Load Thermocouple may be in a fixed position, or may be movable. The Element Thermocouple is fixed in a predetermined position near the heating elements. The Load Thermocouple should be placed as near as possible to the work to be heated.

The Load Loop communicates with the Element Loop, calling for heat according to the load temperature and the current program or set point. The Element Loop regulates the heat according to element temperature and the requests from the Load Loop.

The element temperature could, in principle, vary between the furnace or oven maximum and minimum, regardless of the working temperature of the load. In practice, the cascade control system is configured to limit the element temperature to a band around the load temperature, typically of ±10% of the set-point temperature.

The set point of the load loop, shown at the top of the display, can be adjusted by the operator. The Element Loop, shown at the bottom of the display, should not be adjusted by the operator & will automatically regulate the element temperature to achieve the Load set temperature.

In a three-zone furnace for which the “three zone cascade” option has been ordered the centre zone is a 3508 Dual Loop & separate end zone controls are fitted. The operator sets the Load loop set point on the 3508 centre zone. The end zone controllers work automatically & need no adjustment by the operator.

4.2 Operation of Cascade Control

The operator may ignore all the complications of the system, and program the Load Loop according to the standard instructions for that controller. The home display shows the load loop at the top of the display and the Element loop at the bottom. By pressing the page key, separate views of load and element loops will be shown.
The Element Loop should never be adjusted. Note that the elements usually run at a higher temperature than the load.
Because the details of the customer’s cascade application (in particular the nature of the load) are generally not known, the feed forward parameter (FF Trim) is made easily accessible in level 2 (Refer to instrument operating instructions). Its default setting is 2%. If overshoot of the load temperature occurs – often a problem at low temperatures – then FF Trim can be reduced in order to limit the amount of overshoot. However, if FF trim is reduced too much, the load may not reach the desired temperature. If the load does not reach the desired temperature or is slow in the final stages, FF Trim can be increased: a maximum of 10% is suggested.

When attempting to control at very low temperatures it can become a problem to achieve stable control because of excessive power being supplied during heating. The available power can be limited using the power limit parameter OP.Hi, make a note of the original settings before adjusting. For power settings please refer to the fuse and power section at the back of the manual. If the parameter is normally set to 100%, try initially setting it to 50% to improve stability. Avoid settings below 40% where possible (though some furnaces require low settings for reasons unconnected with cascade control).
Power Limit View
4.3 **Bypassing Cascade Control**

This applies where the Control Thermocouple is a removal probe (e.g. in a tube furnace), or where for other reasons it may be required to operate the furnace or oven directly from the Element Loop.

To operate without Cascade Control the load thermocouple has to remain connected at all time; or a link has to be made across the thermocouple input connections.

4.4 **3508P1 Element Loop (Loop 2)**

In these circumstances the Element Controller is configured with the local/remote parameter, accessible in level 2 (Refer to instrument operating instructions).

To switch cascade control on or off. In Level 2, press Scroll until the display shows \(L-r \).

Using the up \(\uparrow \) down \(\downarrow \) set:

- \(SP2 \) = cascade control on
- \(SP1 \) = cascade control off

The top left hand side of the screen will show \(SPX \) when \(SP2 \) is enabled. The instrument operates as an independent Programmer/Controller when \(L-r \) is set to \(SP1 \). To return to cascade control, change the \(L-r \) parameter to \(SP2 \). Also note that cooling at low temperatures takes longer per degree than it does at high temperatures.

4.5 **Caution**

If the Load Thermocouple is removable, leave it in the furnace or oven chamber whenever possible. Operating with the Cascade Control active and with the Load Thermocouple in an unheated position (such as lying on the work bench) may cause the furnace or oven to heat up to its maximum temperature, wasting power and possibly shortening element life.

4.6 **Over-Temperature Control**

Where over-temperature control is fitted, it normally protects against failure of the control system or of a component such as a power control relay. The over-temperature controller must be set at a level higher than the greatest element temperature, typically 15 °C above maximum.

If the working temperature is less than the maximum temperature, then it may be possible to set the over-temperature limit as follows:

\[
\text{working temperature} + (\text{maximum temperature} \times \text{FF/100}) + 15 \degree \text{C}
\]

where FF is the Feed Forward percent parameter value (e.g. 10)

Example: for working at 800 °C in a 1200 °C product, the over-temperature limit could be set to 800+120+15=935.
5.0 2132 Controller

5.1 Description

The 2132 Controller is made by Eurotherm, and is fitted and configured by Carbolite Gero for immediate use. It is a digital instrument with PID control algorithms.

The 2132 Controller features:

- Easy use as a simple temperature controller, where on setting the required temperature the controller immediately attempts to reach and maintain it.
- A ramp-to-setpoint feature, which may be used to limit the heating (or cooling).
- A timer function which allows for heating for a predetermined time, either from start or from reaching temperature; or alternatively for delaying the start of heating.
- An alarm output which may be used in conjunction with the timer, for example to give an audible alarm at the end of the timing period.

5.2 2132 Controller Operation

5.2.1 Controls

Most Carbolite Gero products are fitted with an instrument switch which cuts off power to the controller and other parts of the control circuit.

To operate the controller, power must be supplied to the product and the instrument switch must be on. If a time switch is included in the product circuit, this must be in the 'ON' position.

When an over-temperature condition occurs, the controller cuts the power to a contactor, which in turn cuts power to the heating elements. Power is not restored until the controller is 'reset'.

Some components will operate after the over-temperature feature isolates the power supply e.g. cooling fans will continue to operate, provided that there is a power supply to the product. In some cases the product may not do so, if other options (such as a door switch) are fitted.
5.2.2 2132 Controller Operation

When switched on, the controller lights up, goes through a short test routine and then displays the measured temperature or the over-temperature setpoint.

The page key \(\text{Page} \) allows access to parameter lists within the controller.

A single press of the page key \(\text{Page} \) displays the temperature units, normally set to \(^\circ\text{C}\); further presses reveal the lists indicated in the navigation diagram.

The scroll key \(\text{Scroll} \) allows access to the parameters within a list. Some parameters are display-only; others may be altered by the operator.

A single press of the scroll key \(\text{Scroll} \) in the 'Home' list displays the temperature units; further presses reveal the parameters in the current list indicated in the navigation diagram.

To return to the 'Home' list at any time, press page \(\text{Page} \) and scroll \(\text{Scroll} \) together, or wait for 45 seconds.

The down \(\text{Down} \) and up \(\text{Up} \) keys are used to alter the setpoint or other parameter values.

5.2.3 Basic Operation

Normally no operator action is required other than entering the setpoint, as the controller starts to control on being switched on, as described above.

5.2.4 Altering the Setpoint

With the display at 'Home', showing the measured temperature, press down \(\text{Down} \) or up \(\text{Up} \) once to display the setpoint; press again or hold down to adjust it. The display returns to the measured temperature when no key is pressed for 30 seconds.
5.0 2132 Controller

5.2.5 Stopping and Starting Control

It is possible to stop and start the controller without altering the setpoint. Press scroll \(\downarrow \) until the legend 'm-A' (manual/auto) appears. In this controller, manual means OFF and auto means ON. Press down \(\downarrow \) or up \(\uparrow \) once to show the current on/off state: 'mAn' for OFF and 'Auto' for ON. Press down \(\downarrow \) or up \(\uparrow \) to change between manual and auto (off and on) as required.

Note that timer modes 1 & 3 set the controller to 'mAn' at the end of the timing period. If the controller unexpectedly does not control it may be in manual, possibly as the result of previous use of the timer function.

5.2.6 Altering the Ramp Rate

It is only possible to limit the rate of heating by setting a ramp rate if the timer feature is not in use.

To enable direct setting of the ramp rate, first ensure that the 'StAt' parameter and 'dwEll' parameter are both set to OFF (see sections 5.3.1 and 5.3.2).

Press scroll \(\downarrow \) until 'SPrr' (setpoint ramp rate) is displayed. Use down \(\downarrow \) or up \(\uparrow \) to display and adjust the value.

The ramp rate sets the maximum rate of heating or cooling in degrees per minute. A value of OFF cancels the ramp rate, allowing heating and cooling at the maximum rate. When this feature is in use, there is a “working setpoint” which can be viewed at any time by scrolling to 'w.SP' and pressing \(\downarrow \) or \(\uparrow \).

Fig 1 and fig 2 indicate the possible difference between operating without and with a ramp-to-setpoint value (depending on the load and the value used).
5.3 Operating with the Timer

This controller can be used as a process timer allowing timed heating or timed delay, according to the options in the table. There are 5 timer modes, but 2 of them are affected by whether the setpoint ramp rate feature is being used, making 7 entries in the table. The table also shows the status of the timer light on the controller. A visual impression of the different modes is given in fig 3.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Temperature</td>
</tr>
<tr>
<td>T2</td>
<td>Time</td>
</tr>
<tr>
<td>SP</td>
<td>Setpoint</td>
</tr>
<tr>
<td>WSP</td>
<td>Working Setpoint</td>
</tr>
<tr>
<td>AT</td>
<td>Actual Temperature</td>
</tr>
</tbody>
</table>

Fig 1 - Control without Ramp-to-Setpoint
Fig 2 - Control with Ramp-to-Setpoint
<table>
<thead>
<tr>
<th>Timer Mode</th>
<th>Description</th>
<th>Timer Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode 1 Timed dwell and switch off</td>
<td>The timer starts timing when the actual temperature is within 1 °C of the setpoint. At the end of the timing period, control switches off (i.e. goes into Manual) to allow cooling and 'End' flashes on the display.</td>
<td>On while temperature is reaching setpoint. On during the timing period. Off from the end of the timing period.</td>
</tr>
<tr>
<td>mode 2 Timed dwell and stay on</td>
<td>The timer starts timing when the actual temperature is within 1 °C of the setpoint. At the end of the timing period, control remains on, maintaining the setpoint temperature and 'End' flashes on the display.</td>
<td>On while temperature is reaching setpoint. On during the timing period. Off from the end of the timing period.</td>
</tr>
<tr>
<td>mode 3, with SPrr off Time from cold and switch off</td>
<td>The timer starts timing immediately. At the end of the timing period, control switches off (i.e. goes into Manual) to allow cooling and 'End' flashes on the display.</td>
<td>On during the timing period. Off from the end of the timing period.</td>
</tr>
<tr>
<td>mode 3, with SPrr active Dwell from working setpoint and switch off</td>
<td>The timer starts timing when the working setpoint is within 1 °C of the setpoint. At the end of the timing period, control switches off (i.e. goes into Manual) to allow cooling and 'End' flashes on the display.</td>
<td>On during the timing period. Off from the end of the timing period.</td>
</tr>
<tr>
<td>mode 4, with SPrr off Time from cold and stay on</td>
<td>The timer starts timing immediately. At the end of the timing period, control remains on, maintaining the setpoint temperature and 'End' flashes on the display.</td>
<td>On during the timing period. Off from the end of the timing period.</td>
</tr>
<tr>
<td>mode 4, with SPrr active Dwell from working setpoint and stay on</td>
<td>The timer starts timing when the working setpoint is within 1 °C of the setpoint. At the end of the timing period, control remains on, maintaining the setpoint temperature and 'End' flashes on the display.</td>
<td>On during the timing period. Off from the end of the timing period.</td>
</tr>
<tr>
<td>mode 5 Delayed switch on</td>
<td>The timer starts timing immediately and control starts at the end of the timing period. There is no 'End' condition in this mode.</td>
<td>On during the timing period. Off from the end of the timing period.</td>
</tr>
</tbody>
</table>
5.0 2132 Controller

5.3.1 Setting the Timer Mode

Scroll to 'tm.OP'; use ▲ or ▼ to view and alter the mode. The mode shows as 'OPt.1' to 'OPt.5'.

It is not possible to alter the mode while the timer is operating; if the mode cannot be altered, scroll to the 'StAt' parameter and set its value to OFF.

5.3.2 Setting the Time Period

Method 1

Scroll to 'tmr' (time remaining). Use ▲ or ▼ to view the remaining time; the units are always in minutes. Use ▲ or ▼ to set or alter the time. Setting 'tmr' automatically activates the timer; the 'm-A' parameter changes to 'Auto' and the 'StAt' parameter changes to run.

Note that the 'tmr' display shows 0 (zero) during the last minute of timing and also shows 0 when the time has expired. The timer light indicates whether timing is still in progress.

Method 2

Scroll to 'dwEll' and use ▲ or ▼ to set the timing duration. The advantage of method 2 is that 'dwEll' need only be set once if repeated use of the same time period is required.

Scroll to 'StAt' and use ▲ or ▼ to set the parameter value to run. This copies the dwell time into 'tmr' and activates the timer as in method 1.

5.3.3 Running with the Timer

Once the timer is activated by method 1 or 2 above, the control sequence depends on the 'Timer' mode, as previously given in the table. Fig 3 gives another representation of the timer action.
5.3.4 Stopping the Timer

To stop the timer at any time while it is operating, change the 'StAt User Calibration' parameter to OFF. This is the same as reducing 'tmr' to zero. The controller then acts as though it has reached the end of the time period.
5.3.5 End of Time Period

Modes 1 and 3: heating stops at the end of timing; the 'm-A' parameter changes to 'mAn'.

Modes 2 and 4: heating continues at the end of timing; the 'm-A' parameter remains at 'Auto'.

Mode 5: heating starts at the end of the timing period; the 'm-A' parameter remains at 'Auto'.

In modes 1 to 4 the alarm message 'End' flashes on the display at the end of timing; the 'StAt' parameter remains at run.

In mode 5 there is no 'End' message; the 'StAt' parameter changes to OFF at the end of timing.

5.3.6 Cancelling the Alarm

To acknowledge (cancel) the 'End' alarm, press page and scroll together; the 'StAt' parameter changes to OFF.

Alternatively cancel the alarm by directly changing the 'StAt' parameter from run to OFF.

5.3.7 Program Example

To heat up at 10 °C per minute to 500 °C; to hold at 500 °C for 1 hour; then to allow to cool down.

(This example uses timing mode 1, as on the first row of the timer table, but also includes the use of ramp rate).

To create this program

1. Start with display at home; use arrow keys to alter the setpoint to 500.
2. Press scroll until 'sp.rr' shows; use arrow key to set value to 10 (if you do not want to limit the ramp rate, ignore this step or set the value to OFF)
3. Press scroll until 'tm.op' shows; use arrow key to set value to opt.1
4. Press scroll until 'dwell' shows; use arrow key to set value to 60
 To operate this program
5. Press scroll until 'stat' shows; use arrow key to set value to run
 - heating starts when run is set;
 - timing starts when the working setpoint reaches 499 °C;
 - heating stops 61* minutes later and 'End' flashes on the display.
6. Cancel 'End' by pressing page and scroll together.

* note that the timer runs for an extra minute, when tmr has counted down to zero; allow for this when testing the system with short durations such as 1 or 2 minutes.

5.4 Altering Power Limit

Overview

Depending on the furnace or oven model the power limit parameter OP.Hi (Output High) may be accessible or hidden.
For silicon carbide heated furnaces the parameter is accessible to allow for compensation for element ageing. In wire-heated chamber or tube furnaces, reducing the power limit is a convenient method of improving control at low temperatures, as outlined below.

The power limit may be set to zero to permit demonstration of the controls without heating.

In many models the power limit setting depends on the supply voltage; usually the furnace or oven manual contains details: if in doubt, contact Carbolite Gero for advice. The power limit parameter does not apply to the over-temperature controller, if fitted.

Altering the value

Press page IntelliJ until oP (output list) is displayed. Press scroll IntelliJ until OP.Hi (Output High) is displayed. Press down IntelliJ or up IntelliJ once to display the value of OP.Hi and write down the value. To alter the value, use down IntelliJ or up IntelliJ.

Note: setting the value to zero prevents the furnace or oven from heating.

Caution: Do not increase the power limit value to a value above the design level for the oven or furnace model, or to a value above that correctly calculated for silicon carbide elements. The heating elements could burn out, or other damage could be caused.

Control at Low Temperatures

If a product is to be used at temperatures much lower than its design maximum, control stability can often be improved by reducing the power limit. Remember to make a record of the original setting before altering the power limit.

Example: It is desired to operate a 1200 °C furnace at 300 °C. The normal control settings can be expected to cause excessive overshoot as the furnace reaches temperature. If the power limit OP.Hi is normally set to 100%, try a setting of 40%. This should greatly reduce the overshoot. (There is no firm calculation rule to get this example setting of 40% – experimentation may be required to achieve a good result. Avoid power limits below approximately 30% – control accuracy is reduced at such levels.)

Depending on the furnace or oven model the power limit parameter OP.Hi (Output High) may be accessible or hidden.

For silicon carbide heated furnaces the parameter is accessible to allow for compensation for element ageing. In wire-heated chamber or tube furnaces, reducing the power limit is a convenient method of improving control at low temperatures, as outlined above.

The power limit may be set to zero to permit demonstration of the controls without heating.

In many models the power limit setting depends on the supply voltage; usually the furnace or oven manual contains details: if in doubt, contact Carbolite Gero for advice.

User Calibration
The controller is calibrated for life at manufacture against known reference sources, but there may be sensor errors or other system errors. User calibration allows compensation for such errors and this controller allows for a user 2-point calibration. This setting is password protected to avoid accidental alteration.

Page to iP, scroll to CAL.P and use up ▲ to alter the password. The password is 3. If the correct password is entered, the display shows PASS. Scroll to CAL and use up ▲ or down ▼ to observe the setting FACt (factory values, as manufactured) or USEr (user values). Change to USEr.

NOTE: before checking the calibration of the controller, or of the complete system, remember to reset the controller to factory calibration values by setting the CAL.P parameter to FACT.

To enter a user calibration, scroll to each of the following parameters in turn and set the desired values.

Pnt.L low temperature for which an offset is to be entered
OFS.L offset value for the low temperature
Pnt.H high temperature for which an offset is to be entered
OFS.H offset value for the high temperature

Example: the controller reads 3 °C low at 400 °C and 5 °C low at 1000 °C. The parameter values should be Pnt.L=400, OFS.L=3, Pnt.H=1000, OFS.H=5.

Negative or positive values can be entered: if the controller is reading high, negative offsets would be appropriate.

Fig 4 gives a graphical representation of the 2-point calibration.
5.5 Audible Alarm

If an audible alarm is supplied for use with the timer function, then it is normally configured to sound at the 'End' condition and to go off when the alarm is acknowledged as given in section 5.3.6.

It is not feasible to cover all possible alarm features which may be included by customer special order, within this manual.

5.6 Temperature Controller Replacement

Before handling the controller: wear an anti-static wrist strap or otherwise avoid any possibility of damage to the unit by static electricity. Refer to the detailed instructions supplied with the replacement controller.

Ease apart the two lugs at the side; grip the instrument and withdraw it from its sleeve; push in the replacement.
5.7 Navigation Diagram

5.0 2132 Controller
Key

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>Home List</td>
</tr>
<tr>
<td>IL</td>
<td>Input List</td>
</tr>
<tr>
<td>OL</td>
<td>Output List</td>
</tr>
<tr>
<td>AL</td>
<td>Access List</td>
</tr>
</tbody>
</table>

1. Measured temperature; use arrow keys to access setpoint
2. Output power (read only)
3. Present only if SPrr in use
4. Manual/Auto (mAn = off, Auto = on)
5. Setpoint ramp rate OFF or value
6. Timer mode
7. Time remaining
8. Dwell time for timer
9. Timer status run or OFF
10. Enter password
11. If User Calibration
12. User 2-Point Calibration
13. Power limit setting, if present
14. For factory access to lists and parameters not available to the operator
6.0 2132 Over-Temperature Controller Description (if fitted)

6.1 Description

This over-temperature controller is fitted and supplied ready to use by Carbolite Gero. It is a digital instrument with a latching alarm, requiring no additional panel controls. The controller features easy setting of over-temperature setpoint and reading of current temperature by the over-temperature sensor.

6.2 Operation

6.2.1 Controls

Most Carbolite Gero products are fitted with an instrument switch which cuts off power to the controller and other parts of the control circuit.

To operate the controller, power must be supplied to the product and the instrument switch must be on. If a time switch is included in the product circuit, this must be in the 'ON' position.

When an over-temperature condition occurs, the controller cuts the power to a contactor, which in turn cuts power to the heating elements. Power is not restored until the controller is 'reset'.

Some components will operate after the over-temperature feature isolates the power supply e.g. cooling fans will continue to operate, provided that there is a power supply to the product. In some cases the product may not do so, if other options (such as a door switch) are fitted.
6.2.2 Operation

When switched on, the controller lights up, goes through a short test routine and then displays the measured temperature or the over-temperature setpoint.

The page key
allows access to parameter lists within the controller.

A single press of the page key
displays the temperature units, normally set to °C; further presses reveal the lists indicated in the navigation diagram.

The scroll key
allows access to the parameters within a list. Some parameters are display-only; others may be altered by the operator.

A single press of the scroll key
in the 'Home' list displays the temperature units; further presses reveal the parameters in the current list indicated in the navigation diagram.

To return to the 'Home' list at any time, press page
and scroll
together, or wait for 45 seconds.

The down
and up
keys are used to alter the setpoint or other parameter values.

6.2.3 Over-Temperature Operation

Use down
and up
to alter the over-temperature setpoint. This should normally be set a little above the working temperature (for example 15 °C above). The product is supplied with the over-temperature set at 15 °C above the furnace or oven maximum working temperature.

Press scroll
twice view the present temperature as measured by the over-temperature controller. Press it twice, the first press shows the temperature units (°C).

6.2.4 Over-Temperature Alarm

If an over-temperature condition occurs, the OP2 indicator flashes and an alarm message 2FSH also flashes, alternating with the setpoint. Power to the heating elements is disconnected.

6.2.5 Resetting the Over-Temperature Alarm

To acknowledge the alarm press scroll
and page
together.

If the alarm is acknowledged while there is still an over-temperature condition, the OP2 indicator stops flashing but continues to glow. The 2FSH alarm continues to flash until the over-temperature condition is cleared (by the temperature falling), when normal operation resumes.

If the alarm is acknowledged when the temperature has dropped (or after the over-temperature setpoint has been raised) so that the over-temperature condition no longer exists, then the furnace or oven immediately resumes normal operation.

6.2.6 Sensor Break

The over-temperature cut-out system also operates if the over-temperature control thermocouple breaks or becomes disconnected. The message S.br flashes where the measured temperature is normally displayed.
6.3 Audible Alarm

If an audible alarm is supplied for use with the over-temperature controller, it is normally configured to sound on over-temperature condition and to stop sounding when the alarm is acknowledged as given in section 6.2.

Note: the alarm may sound during controller start-up.

6.4 Navigation Diagram

<table>
<thead>
<tr>
<th>HL</th>
<th>Home List</th>
<th>Page Key</th>
<th>Black = Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTSP</td>
<td>Over-Temperature Setpoint</td>
<td>Scroll Key</td>
<td>Dashed = Through to other options</td>
</tr>
<tr>
<td>AL</td>
<td>Access List</td>
<td>!</td>
<td>For factory access to list and parameters not available to the operator.</td>
</tr>
</tbody>
</table>
7.0 Operation

7.1 Operating Cycle

This product is fitted with an instrument switch which cuts off power to the control circuit.

Connect the product to the electrical supply.

There is also a heater switch which can be used to disconnect power to the elements.

Operate the instrument switch to activate the temperature controller. The controller becomes illuminated and goes through a short test cycle.

Over-Temperature option only. If the digital over-temperature option has not yet been set as required, set and activate it according to the over-temperature controller instructions.

The product will heat up according to the controller setpoint or program, unless a time switch is fitted and switched off.

As the product heats up, the heat light glows steadily at first and then flashes as the product approaches the desired temperature. For more information on temperature control see the controller instructions.

Over-Temperature option only. If the over-temperature circuit has tripped, an indicator on the over-temperature controller flashes and the heating elements are isolated. Find and correct the cause before resetting the over-temperature controller according to the instructions supplied.

To switch off power to the heating elements, use the heater switch. To switch the product off, use both the heater switch and the instrument switch. If the product is to be left switched off and unattended, isolate it from the electrical supply.

7.2 Control Method

Set the three temperature controllers to the desired setpoints. The setting and operation of the end zone controllers depends on the 3-zone control options selected when the product was ordered. These options are described in the 3-zone control methods section.

Note: Despite its vertical orientation, the heated zones of the KVZ model are labelled to correspond with the relevant control module on the CC-T1 touchscreen controller display (Left, Main, Right).

7.3 3-Zone Control Methods

There are three different control options (A, B & C).

(A) Back to back thermocouples

(B) Retransmission of Setpoint

(C) Independent control
The models listed in this manual are designed to achieve an extended uniform temperature zone, through use of three control zones, rather than achieving different temperatures in each zone.

For A & B, the control zones are linked so that they all follow the centre zone controller in a master-slave approach.

Note:*
- Option A is **NOT** applicable when using the CC-T1 controller
- Option B is **NOT** applicable when using the Eurotherm 2132 End Zone Controller

A. Back-to-Back Thermocouples

This is the most commonly supplied option. The centre zone of the tube furnace is controlled directly by the centre zone temperature controller. The two end zone thermocouples are wired in opposition to the centre zone reference thermocouple. If the temperatures of the centre and end zones are the same then 0°C will be displayed on the end zone controllers. If the end zone temperatures are either higher or lower than the centre zone, the end zone controller will display the difference in temperature (higher = positive value, lower = negative value).

It is best practice to set the setpoint of the two end zone controllers to zero. Alternatively, a small temperature difference (offset) can be created by setting a non-zero value, for example to compensate for heat losses at the end or where using a gas flow. However, the sum of the centre zone controller setpoint and the end zone controller offset MUST NOT exceed the furnace maximum temperature.

To alter the setpoint with the display showing the Home screen, press Down ▼ or Up ▲ once to display the setpoint and then press again or hold down to adjust it. The display returns to the measured temperature when no key is pressed for a short period of time.

Sometimes a furnace using this type of control does not cool down because the end zones lose heat first and therefore the end zone controllers try to compensate for this by switching on the end zone elements, preventing the furnace from cooling.

B. Retransmission of Setpoint

Three independent thermocouples are connected to three controllers. The three controllers are linked together and the centre zone controller communicates the desired setpoint to the end zone controllers. If the centre zone controller is set to a setpoint or is running a program, the end zone controllers will automatically follow.

For products with the CC-T1 controller, please refer to the separate CC-T1 controller manual for details on enabling and disabling setpoint retransmission.

For other products, additional communication modules are fitted in the controllers. The communication between the controllers of the Eurotherm 3000 series is known as Broadcast communications. It is possible to switch off the linked control and allow the
controllers to work independently. In the level 2 menu of the end zone controllers (see controller operating instruction), scroll to L-r. Where the end zone controller is a 3216 use the ▲ up ▼ down buttons and select NO. Where the end zone controller is a 3508 use the ▲ up ▼ down buttons to select SP1, (SP1 = Local, and SP2 = Remote). There is no need to alter the centre zone controller.

It is possible to set an offset (local trim) between the centre and end zone controllers. This can be either a positive or negative difference from the centre zone temperature. Once entered, this offset will always be added to, or subtracted from, the retransmitted setpoint temperature.

For products with the CC-T1 controller, please refer to the separate CC-T1 controller manual for details on how to set an offset trim.

To make this adjustment on other controllers, enter the level 2 menu of the end zone controllers (see controller operating instruction), scroll to LOC.T (local trim) and use the ▲ up ▼ down buttons to enter the desired positive or negative value. This will then be added to, or subtract from, the end zone set temperature. There is no need to alter the centre zone controller.

C. Independent Control
The three controllers are completely independent. Note that it is not possible to maintain very different temperatures in the three zones because of heat transfer between the zones. The models listed in this manual are designed to achieve an extended uniform temperature zone by the use of three control zones rather than achieving different temperatures in each zone.

7.4 General Operating Advice

Heating element life is shortened by overheating. Do not leave the product at high temperature when it is not required. The maximum temperature is shown on the product rating label and in section 13.0 towards the back of this manual.

Lightweight ceramic fibre insulation can easily be marked by accidental contact. Some fine cracks may develop in the surface of the insulation due to the progressive shrinkage of the insulation materials. Cracks are not usually detrimental to the functioning or the safety of the product.

Clean up any spillages in the insulation, as these can increase the rate of degradation of the insulation material.
7.5 Operator Safety

The ceramic materials used in the product manufacture become electrically conductive to some extent at high temperatures. DO NOT use any conductive tools within the product without isolating it. If a metal work tube is used, it must be earthed (grounded).

Switch off the heater switch whenever loading or unloading the product. The elements are isolated when the heater switch is OFF. This switch cuts both sides of the circuit via a contactor.

7.6 Tube Life

A ceramic work tube may crack if work pieces are inserted too quickly or at temperatures below 900 °C (when the tube is more brittle). Large work pieces should also be heated slowly to ensure that large temperature differences do not arise.

Poor thermal contact should be encouraged between the work piece and the tube; crucibles or boats should be of low thermal mass and should have feet to reduce the contact with the tube (fig. 4).

Do not set too high a heating or cooling rate. As tubes are susceptible to thermal shock and may break. Tubes which extend beyond the heated part of the furnace are more at risk. A general rule for maximum heating or cooling rate is \(400 \div \text{internal diameter in mm} \) to give \(^\circ\text{C/min} \); for 75 mm i/ d tubes this comes to 5 °C per minute. The controller can be set to limit both the heating and cooling rate.

7.7 Pressure

Work tubes are not able to accept high internal pressure. When gas seals or similar fittings are in use, the gas pressure should be restricted to a maximum of 0.2 bar (3 psi). A pressure of approximately half of that should normally be sufficient to achieve the desired flow rate. The operator must ensure that the exhaust path from the tube is not blocked, so that excess pressure does not occur.
A suitably regulated gas supply should always be used. It is recommended that a pressure relief system should be used to avoid an over pressurisation of the work tube.

Please note: A product should not be heated up if any valves that have been fitted are closed to create a sealed volume. A sealed work tube should not be heated from cold due to the pressure increase caused by the trapped air or gas expanding during the heating process.

7.8 Power Adjustment

The control system incorporates electronic power limiting. The power limit parameter OP.Hi is accessible to the operator and can be used to adjust the furnace to the actual supply voltage.

The models covered by this manual are designed for use over the range of voltages 200 V - 250 V (or, if ordered, 100 V - 125 V), and the power limit parameter is set accordingly. These models may be adjusted to a different voltage within the range: the power limit should be reset to match OP.Hi, see 12.0

Refer to section 3.0 for power adjustment instructions.

7.9 Running at Low Temperatures

The power limit may be adjusted to a low level in order to achieve better control when operating the product at a low temperature. Before changing the power limit, record the default settings for possible future use. Refer to the Power Settings section of this manual for default power limits. If the product fails to reach the desired temperature, refer to the Temperature Controller and Fault Analysis sections.
8.0 Maintenance

8.1 General Maintenance

Preventive rather than reactive maintenance is recommended. The type and frequency depends on the product use; the following are recommended.

8.2 Maintenance Schedule

CUSTOMER QUALIFIED PERSONNEL

DANGER! ELECTRIC SHOCK. Risk of fatal injury. Only electrically qualified personnel should attempt these maintenance procedures.

<table>
<thead>
<tr>
<th>Maintenance Procedure</th>
<th>Method</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily Weekly Monthly Bi-Annually Annually</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-Temperature Safety Circuit (if fitted)</td>
<td>Set an over-temperature setpoint lower than the displayed temperature and check for an over-temperature alarm as detailed in this manual</td>
<td></td>
</tr>
<tr>
<td>Over-Temperature Safety Circuit (if fitted)</td>
<td>Electrical measurement</td>
<td></td>
</tr>
<tr>
<td>Safety Switch Function (split models only)</td>
<td>Set a safe temperature above ambient, and open the furnace to see if the heater light goes out</td>
<td></td>
</tr>
<tr>
<td>Safety Switch Function (split models only)</td>
<td>Electrical measurement</td>
<td></td>
</tr>
<tr>
<td>Electrical Safety (external)</td>
<td>Visual check of external cables and plugs</td>
<td></td>
</tr>
<tr>
<td>Electrical Safety (internal)</td>
<td>Physically check all connections and cleaning of the power plate area</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Calibration</td>
<td>Tested using certified equipment, frequency dependent on the standard required</td>
<td></td>
</tr>
<tr>
<td>Operational Check</td>
<td>Check that all functions are working normally</td>
<td></td>
</tr>
<tr>
<td>Operational Check</td>
<td>Thorough inspection and report incorporating a test of all functions</td>
<td></td>
</tr>
<tr>
<td>Work Tube Position</td>
<td>Visually check that the tube is central to the heated zone (horizontally / vertically)</td>
<td></td>
</tr>
<tr>
<td>End Plugs / Radiation Shields</td>
<td>Visual check for damage or wear, and cor-</td>
<td></td>
</tr>
</tbody>
</table>
8.0 Maintenance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seals (if fitted)</td>
<td>Check all seals and O-rings and clamps</td>
</tr>
</tbody>
</table>

Performance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Circuit</td>
<td>Electrical measurement</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Measure the current drawn on each phase / circuit</td>
</tr>
<tr>
<td>Cooling Fans (if fitted)</td>
<td>Check whether the cooling fans are working</td>
</tr>
</tbody>
</table>
8.0 Maintenance

8.2.1 Cleaning
Soot deposits may form inside the furnace, depending on the process. At appropriate intervals remove these by heating as indicated in the General Operation Notes.

The product's outer surface may be cleaned with a damp cloth. Do not allow water to enter the interior of the case or chamber. Do not clean with organic solvents.

8.2.2 Safety Switch
When correctly functioning, the safety switch will isolate all live conductors (live and neutral connections) within the heating element circuit(s) when the product door is opened. The safety switch should be checked regularly to ensure that this occurs.

The safety switch should not fail under normal working conditions, however rough handling, exposure to corrosive materials/environments, or exceptionally frequent use, could compromise the safety system.

Weekly check:
The following check can be carried out by a general operator:

- On the temperature controller, set a safe temperature above ambient. The heater lights should illuminate.
- Open the door and check the heater lights. They should no longer be illuminated.

If the heater lights remain illuminated when the door is open, discontinue use and contact Carbolite Gero Service.

Annual check:
The following checks should be carried out by a qualified electrician, as specified in the "Maintenance Schedule" section of this manual:

- Remove the element access panel and take a voltage measurement from the heating element terminals. Do not attempt to take a reading from the heating element itself as surface oxidation will give an unreliable contact.
- Ensure that power to the heating elements is switched off when the door is opened.

Contact Carbolite Gero Service and discontinue use of the product if it is found that the heating elements are not fully isolated during these checks.

8.3 Calibration
After prolonged use, the controller and/or thermocouple may require recalibration. This is important for processes that require accurate temperature readings or for those that use the product close to its maximum temperature. A quick check using an independent
thermocouple and temperature indicator should be made from time to time to determine whether full calibration is required. Carbolite Gero can supply these items. Depending on the controller fitted, the controller instructions may contain calibration instructions.

8.4 After-Sales Service

Carbolite Gero Service has a team of Service Engineers who can offer repair, calibration and preventive maintenance of furnace and oven products both at the Carbolite Gero factory and at customers’ premises throughout the world. A telephone call or email often enables a fault to be diagnosed and the necessary parts to be despatched.

In all correspondence please quote the serial number and model type given on the rating label of the product. The serial number and model type are also given on the back of this manual when supplied with the product.

Carbolite Gero Service and Carbolite Gero contact information can be found on the back page of this manual.

8.5 Recommended Spare Parts and Spare Parts Kit

Carbolite Gero can supply individual spare parts or a kit of the items most likely to be required. Ordering a kit in advance can save time in the event of a breakdown.

Each kit consists of one of each type of thermocouple, one solid state relay and two heating elements.

When ordering spare parts please quote the model details as requested above.
9.0 Repairs and Replacements

9.1 Safety Warning - Disconnection from Power Supply

Immediately switch the product off in the event of unforeseen circumstances (e.g. large amount of smoke). Allow the product to return to room temperature before inspection.

Always ensure that the product is disconnected from the electrical supply before repair work is carried out.

Caution: Double pole/neutral fusing may be used in this product.

9.2 Safety Warning - Refractory Fibre Insulation

Insulation made from High Temperature Insulation Wool

Refractory Ceramic Fibre, better known as (Alumina silicate wool - ASW).

This product contains *alumino silicate wool* products in its thermal insulation. These materials may be in the form of blanket or felt, formed board or shapes, slab or loose fill wool.

Typical use does not result in any significant level of airborne dust from these materials, but much higher levels may be encountered during maintenance or repair.

Whilst there is no evidence of any long term health hazards, it is strongly recommended that safety precautions are taken whenever the materials are handled.

Exposure to fibre dust may cause respiratory disease.

When handling the material, always use approved respiratory protection equipment (RPE-eg. FFP3), eye protection, gloves and long sleeved clothing.

Avoid breaking up waste material. Dispose of waste in sealed containers.

After handling, rinse exposed skin with water before washing gently with soap (not detergent). Wash work clothing separately.

Before commencing any major repairs it is recommended to make reference to the European Association representing the High Temperature Insulation Wool industry (www.ecfia.eu).

Further information can be provided on request. Alternatively, Carbolite Gero Service can quote for any repairs to be carried out either on site or at the Carbolite Gero factory.

9.3 Temperature Controller Replacement

Refer to the controller instructions for more information on how to replace the temperature controller.
9.4 Solid-state Relay Replacement

Connect the product from the power supply and remove the appropriate cover as given above.

1. Make a note of the wire connections to the solid state relay, then disconnect them.
2. Remove the solid state relay from the base panel or aluminium plate.
3. Replace and reconnect the solid state relay ensuring that the bottom of it has good thermal contact with the base panel or aluminium plate.
4. Replace the access panel.

9.5 Thermocouple Replacement

For vertical models it may be necessary to dismount the furnace from its stand and remove the terminal cover.

Disconnect the product from the power supply. Remove terminal cover to gain access to the thermocouple connections. Make a note of the thermocouple connections.

Thermocouple cable colour codings are:

<table>
<thead>
<tr>
<th>thermocouple leg</th>
<th>colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive (type N)</td>
<td>pink</td>
</tr>
<tr>
<td>negative</td>
<td>white</td>
</tr>
</tbody>
</table>

Disconnect the thermocouple from its terminal block.

Carefully withdraw the thermocouple from the product and remove any broken bits of thermocouple.

Bend the new thermocouple carefully to match the shape of the original (working from the terminal end). Should the length differ from that of the original this is usually not important provided that the thermocouple tip is within a work tube diameter's distance from the furnace centre.

Insert the new thermocouple into position, restoring any removed porcelain spacers and ensuring correct polarity.

Re-assemble the furnace.

9.6 Element Replacement

See section 9.2 - wearing a face mask is required.

Remove the three screws from each end and lift out the half-circular insulation assembly.

Make a plan of all the cable connections and disconnect the cables.
9.0 Repairs and Replacements

Remove the thermocouple(s) by withdrawing them from the sheaths in the elements.
Remove the plates through which the element tails are located. Remove the keep plates from each side of the insulation assembly.

Lift out the element to be replaced; save any insulation sleeves for possible reuse.

Bend or cut the new element tails as necessary and fit any insulation sleeves; feed the tails through and fit the element into place.

Refit the keep plates on each side. Refit the tail termination plates, ensuring that the element tails do not touch any metal parts. Refit the thermocouple(s).

Connect all the wiring according to the plan previously made and complete the reassembly of the product.

Check that the product is controlling properly to rule out the possibility that the element failed because of a fault in the control system.

9.7 Fuse Replacement

Fuses are marked on the wiring diagram with type codes, e.g. F1, F2. For more information on fuses refer to section 12.0.

Depending on model and voltage, the different fuse types may or may not be fitted.

If any fuse has failed, it is advisable for an electrician to check the internal circuits.

Replace any failed fuses with the correct type. For safety reasons do not fit larger capacity fuses without first consulting Carbolite Gero.

The fuses are located at the cable entry point. Remove the back panel or control box back panel to gain access to the fuses.
10.0 Fault Analysis

A. Furnace Does Not Heat Up

<table>
<thead>
<tr>
<th>Step</th>
<th>Condition</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The HEAT light is ON</td>
<td>The heating element has failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check also that the SSR is working</td>
</tr>
<tr>
<td></td>
<td></td>
<td>correctly</td>
</tr>
<tr>
<td>2.</td>
<td>The HEAT light is OFF</td>
<td>The controller shows a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>very high temperature or code such as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.br</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The thermocouple has broken or has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a wiring fault</td>
</tr>
<tr>
<td></td>
<td>The controller shows a</td>
<td>The door switch(es) (if fitted) may</td>
</tr>
<tr>
<td></td>
<td>low temperature</td>
<td>be faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The contactor/relay (if fitted) may</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The heater switch (if fitted) may</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be faulty or need adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The SSR could be failing to switch on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>due to internal failure, faulty logic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wiring from the controller, or faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>controller</td>
</tr>
<tr>
<td></td>
<td>There are no lights</td>
<td>Check the supply fuses and any</td>
</tr>
<tr>
<td></td>
<td>glowing on the controller</td>
<td>fuses in the furnace control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compartment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The controller may be faulty or not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>receiving a supply due to a faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>switch or a wiring fault.</td>
</tr>
</tbody>
</table>
10.0 Fault Analysis

B. Product Overheats

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Product only heats up when the instrument switch is ON</td>
<td>The controller shows a very high temperature</td>
<td>The controller is faulty</td>
</tr>
<tr>
<td></td>
<td>The controller shows a low temperature</td>
<td>The thermocouple may be faulty or may have been removed out of the heating chamber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The thermocouple may be connected the wrong way around</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The controller may be faulty</td>
</tr>
<tr>
<td>2. Product heats up when the instrument switch is OFF</td>
<td>The SSR has failed "ON"</td>
<td>Check for an accidental wiring fault that could have overloaded the SSR</td>
</tr>
</tbody>
</table>
11.0 Wiring Diagrams

For wiring diagrams, please contact Carbolite Gero Service. Please quote the serial number and model.
12.0 Fuses and Power Settings

12.1 Fuses

F1-F3: Refer to the circuit diagrams.

<table>
<thead>
<tr>
<th>F1</th>
<th>Internal Supply Fuses</th>
<th>Fitted if supply cable fitted. Fitted on board to some types of EMC filter.</th>
<th>GEC Safeclip of the type shown (glass type F up to 16 A) 38 mm x 10 mm type F fitted on EMC filter circuit board(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>Auxiliary Circuit Fuses</td>
<td>Fitted on board to some types of EMC filter. May be omitted up to 25 Amp/phase supply rating.</td>
<td>2 Amps glass type F On board: 20 mm x 5 mm Other: 32 mm x 6 mm</td>
</tr>
<tr>
<td>F3</td>
<td>Heat Light Fuses</td>
<td>May be omitted up to 25 Amp/phase supply rating.</td>
<td>2 Amps glass type F 32 mm x 6 mm</td>
</tr>
<tr>
<td></td>
<td>Customer Fuses</td>
<td>Required if no supply cable fitted. Recommended if cable fitted.</td>
<td>See rating label for current; See table below for fuse rating.</td>
</tr>
</tbody>
</table>

Access to internal fuses is by the removal of the back panel of the control box.

For fuse ratings, please contact Carbolite Gero Service. Please quote the serial number and model.

Please refer to the rating label for product specific information.
13.0 Specifications

Carbolite Gero reserves the right to change the specification without notice.

<table>
<thead>
<tr>
<th>Model</th>
<th>Max Temp (°C)</th>
<th>Max Power (kW)</th>
<th>Recommended Work Tube Length for use in air (mm)</th>
<th>Recommended Work Tube Length for use in modified atmosphere (mm)</th>
<th>Heated Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KZS 12/600</td>
<td>1200</td>
<td>8</td>
<td>1100</td>
<td>1300</td>
<td>600</td>
</tr>
</tbody>
</table>

Note: Weights are approximate for horizontal models and do not include fittings or vertical stands.

13.1 Environment

The furnaces contain electrical parts and should be stored and used in indoor conditions as follows:

Ambient temperature working range

Temperature: 5 °C to 40 °C

Note: when operating the furnace at temperatures close to the maximum and the ambient temperature is above 30 °C, the allowed external temperature defined in EN 61010-1:2010 may be exceeded.

Relative humidity

Maximum 80% up to 31 °C, decreasing linearly to 50% at 40 °C.

Important safety notice:

After transportation or storage in humid conditions, the furnace could fail to meet all the safety requirements of BSEN 61010-2-010 until it has completed the drying out process to restore its normal condition.

Warning:

It cannot be assumed that the furnace will meet all the safety requirements of BSEN 61010-2-010 during the drying out process.

Furnace drying out process

Step 1. Before the furnace is connected to the electrical supply, remove the back panel and check for signs of moisture on the electrical circuits. If visible signs of moisture are present then allow it to dry out in ambient temperature for at least 24 hours. If the problem persists ensure that the furnace is isolated and contact Carbolite Gero Service for more information.
Step 2. Complete the Installation procedure (see section 1.0).

Step 3. After reading the controller operation instructions, heat the furnace following the temperature profile given below. This will need to be done manually on furnaces with basic control option or programmed into the controller if an advanced control option is fitted:

- Ramp the setpoint temperature @ 2 °C/ minute to 100 °C and dwell for 2 hours.
- Ramp the setpoint temperature @ 2 °C/ minute to 300 °C and dwell for 3 hours.
- Ramp the setpoint temperature @ 3 °C/ minute to 1100 °C and dwell for 1 hour.
- Cool naturally to ambient temperature.
- Furnace drying out process is complete.
Service Record

<table>
<thead>
<tr>
<th>Engineer Name</th>
<th>Date</th>
<th>Record of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The products covered in this manual are only a small part of the wide range of ovens, chamber furnaces and tube furnaces manufactured by Carbolite Gero for laboratory and industrial use. For further details of our standard or custom built products please contact us at the address below, or ask your nearest stockist.

For preventive maintenance, repair and calibration of all furnace and oven products, please contact:

Carbolite Gero Service

Telephone: + 44 (0) 1433 624242
Fax: +44 (0) 1433 624243
Email: ServiceUK@carbolite-gero.com